思路:
以y的值进行离散化
根据x的值 对每一条y轴边进行处理,如果是"左边"则插入,是"右边"则删除。
/*
扫描线+线段树+离散化
求多个矩形的周长
*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
#include<queue>
#include<stack>
#include<math.h>
#include<map>
using namespace std;
const int maxn = 5005;
const int maxm = 10010;
struct SegTree{
int l,r;
int len;//区间代表的长度
int segnum;//区间被分成的段数
int cover;//区间被覆盖的次数
int sum;//区间被覆盖的总长度
bool lcover,rcover;
}ST[ maxm<<2 ];
struct Line{
int st,ed,x;//竖边的两个y值
bool InOut;//是否为左边
bool operator < (Line L) const{
return x<L.x;
}
};
Line yLine[ maxm ];
int yIndex[ maxm ];
int n;
void build( int L,int R,int n ){
ST[ n ].l = L;
ST[ n ].r = R;
ST[ n ].len = yIndex[ R ]-yIndex[ L ];
ST[ n ].sum = ST[ n ].cover = ST[ n ].segnum = 0;
ST[ n ].lcover = ST[ n ].rcover = false;
if( R-L>1 ){
int mid = (L+R)/2;
build( L,mid,2*n );
build( mid,R,2*n+1 );
}
return ;
}
void Update_Len( int n ){
if( ST[n].cover>0 ){
ST[n].sum = ST[n].len;
}
else if( ST[n].r-ST[n].l>1 ){
ST[n].sum = ST[2*n].sum+ST[2*n+1].sum;
}
else
ST[n].sum = 0;
}
void Update_Segnum( int n ){
if( ST[n].cover>0 ){
ST[n].lcover = ST[n].rcover = true;
ST[n].segnum = 1;
}
else if( ST[n].r-ST[n].l>1 ){
ST[n].lcover = ST[2*n].lcover;
ST[n].rcover = ST[2*n+1].rcover;
ST[n].segnum = ST[2*n].segnum+ST[2*n+1].segnum-ST[2*n].rcover*ST[2*n+1].lcover;
}
else{
ST[n].segnum = 0;
ST[n].lcover = ST[n].rcover = false;
}
}
void PushUp ( int n ){
Update_Len( n );
Update_Segnum( n );
}
void Insert( int left,int right,int n ){
if( ST[ n ].l==left&&ST[ n ].r==right ){
ST[ n ].cover++;
}
else {
int mid = (ST[ n ].l+ST[ n ].r)/2;
if( right<=mid )
Insert( left,right,2*n );
else if( left>=mid )
Insert( left,right,2*n+1 );
else{
Insert( left,mid,2*n );
Insert( mid,right,2*n+1 );
}
}
PushUp( n );
}
void Delete( int left,int right,int n ){
if( ST[ n ].l==left&&ST[ n ].r==right ){
ST[ n ].cover--;
}
else {
int mid = (ST[ n ].l+ST[ n ].r)/2;
if( right<=mid )
Delete( left,right,2*n );
else if( left>=mid )
Delete( left,right,2*n+1 );
else{
Delete( left,mid,2*n );
Delete( mid,right,2*n+1 );
}
}
PushUp( n );
}
int GetIndex( int value ,int cnt ){
return lower_bound(yIndex,yIndex+cnt,value )-yIndex;
}
int main(){
while( scanf("%d",&n)==1 ){
int cnt = 0;
int x1,y1,x2,y2;
for( int i=0;i<n;i++ ){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
yLine[ 2*i ].x = x1;
yLine[ 2*i+1 ].x = x2;
yLine[ 2*i ].st = yLine[ 2*i+1 ].st = y1;
yLine[ 2*i ].ed = yLine[ 2*i+1 ].ed = y2;
yLine[ 2*i ].InOut = true;
yLine[ 2*i+1 ].InOut = false;
yIndex[ 2*i ] = y1;
yIndex[ 2*i+1 ] = y2;
}
sort( yIndex,yIndex+2*n );
sort( yLine,yLine+2*n );
for( int i=1;i<2*n;i++ ){
if( yIndex[i]!=yIndex[i-1] )
yIndex[cnt++] = yIndex[i-1];
}
yIndex[cnt++] = yIndex[2*n-1];
build( 0,cnt-1,1 );
int Ans = 0;
int PreSum = 0;;
for( int i=0;i<2*n-1;i++ ){
if( yLine[i].InOut ){
Insert( GetIndex(yLine[i].st,cnt),GetIndex(yLine[i].ed,cnt),1 );
}
else{
Delete( GetIndex(yLine[i].st,cnt),GetIndex(yLine[i].ed,cnt),1 );
}
Ans += ST[1].segnum*2*(yLine[i+1].x-yLine[i].x);
Ans += abs(ST[1].sum-PreSum);
PreSum = ST[1].sum;
}
Delete( GetIndex(yLine[2*n-1].st,cnt),GetIndex(yLine[2*n-1].ed,cnt),1 );
Ans += abs(ST[1].sum-PreSum);
printf("%d\n",Ans);
}
return 0;
}