状态压缩DP
对于某一行的状态可以由前面的两行推出。
即:dp[ i ][ j ][ k ] = max( dp[ i ][ j ][ k ] , dp[ i-1 ][ k ] [ k2 ] + ones[ j ] );
其中i-1表示前1行,k2是前2行的状态。
/*
题意:n行m列的矩阵,1表示可以放东西,0表示不可以。曼哈顿距离为2的两个位置最多只能有一个位置放东西。
问最多放多少个东西。
*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
#include<queue>
#include<stack>
#include<math.h>
#include<map>
using namespace std;
const int maxn = 105;
const int maxm = 12;
const int N = 170;
int mat[ maxn ];
int dp[ maxn ][ N ][ N ];//
int state[ N ];
int ones_state[ N ];
int Count_ones( int x ){
int cnt = 0;
while( x ){
if( x&1 )
cnt++;
x>>=1;
}
return cnt;
}
int init( int n,int m ){
memset( state,0,sizeof( state ) );
memset( ones_state,0,sizeof( state ) );
int M = 1<<m;
int cnt = 0;
for( int i=0;i<M;i++ ){
if( (i&(i<<2))==0 ){
state[ cnt ] = i;
ones_state[ cnt ] = Count_ones( i );
cnt++;
}
}
//printf("cnt=%d\n",cnt);最多169种状态!!
return cnt;
}
void DP( int cnt,int n,int m ){
memset( dp,-1,sizeof( dp ) );
for( int i=0;i<cnt;i++ ){
if( (state[i]&mat[0])==0 )
dp[0][i][0] = ones_state[ i ];
}//初始化
for( int i=1;i<n;i++ ){
for( int j=0;j<cnt;j++ ){
if( (state[j]&mat[i])==0 ){//
for( int k=0;k<cnt;k++ ){
if( (state[j]&(state[k]<<1))==0&&(state[j]&(state[k]>>1))==0 ){//
for( int k2=0;k2<cnt;k2++ ){
if( dp[i-1][k][k2]==-1 ) continue;
if( (state[j]&state[k2])==0&&(state[k]&(state[k2]>>1))==0&&(state[k]&(state[k2]<<1))==0 )
dp[ i ][ j ][ k ] = max( dp[i][j][k],dp[i-1][k][k2]+ones_state[j] );
}
}
}
}
}
}
}
int main(){
int n,m;
while( scanf("%d%d",&n,&m)==2 ){
int cnt = init( n,m );
memset( mat,0,sizeof( mat ) );
int tmp;
for( int i=0;i<n;i++ ){
for( int j=0;j<m;j++ ){
scanf("%d",&tmp);
if( tmp==0 ){
mat[ i ] |= (1<<j);
}
}
}
DP( cnt,n,m );
int ans = 0;
for( int i=0;i<cnt;i++ )
for( int j=0;j<cnt;j++ )
ans = max( ans,dp[n-1][i][j]);
printf("%d\n",ans);
}
return 0;
}