目录
1、类 Lyapunov 方法(Lyapunov-like Methods)
1.2 不仅给出存在的一个充分性条件,同时提出构造增益矩阵 L 的方法
1.4 类 Lyapunov 方法非线性系统观测器设计方法总结:
2.2 Reif—— 基于对扩展的 Kalman 滤波器一定的改进
3、类 Luenberger 方法(扩展的 Luenberger 方法)
基于干扰观测器的控制(简称DOBC)
- 其基本思想是:通过设计干扰观测器来估计未知干扰,并在前馈通道中予以补偿,从而达到有效地抑制干扰的目的。
- 其控制器包含两部分:一个反馈控制器和一个基于干扰观测器的前馈控制器。
1)反馈控制器用来跟踪和镇定被控系统的标称部分,这一部分不必考虑干扰或不确定性的存在;
2)干扰观测器来估计控制系统的千扰或不确定性;
3)前馈控制器来加以补偿。
对于非线性系统观测器一般形式:
仿照线性系统观测器之设计方法,很多情况下 k 为如下形式
观测器设计的关键是如何设计增益矩阵 L ,使观测器之输出渐近趋向于原系统的真实状态。
1、类 Lyapunov 方法(Lyapunov-like Methods)
问题则又转化为:如何寻找 k 使误差方程(1.2.6)具有稳定的平衡点零的问题
eg:Lipschitz 非线性系统
1.1 需要在已知增益矩阵L的前提下设计:
的微分小于零,因而误差方程在平衡点稳定,这说明(1.2.12)是 Lipschitz 系统的渐近观测器。