非线性系统基于干扰观测器的抗干扰控制

目录

基于干扰观测器的控制(简称DOBC)

1、类 Lyapunov 方法(Lyapunov-like Methods)

1.1 需要在已知增益矩阵L的前提下设计:

1.2  不仅给出存在的一个充分性条件,同时提出构造增益矩阵 L 的方法

1.3  指数型观测器的设计方法

1.4  类 Lyapunov 方法非线性系统观测器设计方法总结:

2、扩展的 Kalman 滤波器方法

2.1  扩展 Kalman  滤波器技术

2.2  Reif—— 基于对扩展的 Kalman 滤波器一定的改进

3、类 Luenberger 方法(扩展的 Luenberger 方法)

4、 自适应观测器及鲁棒观测器


基于干扰观测器的控制(简称DOBC)

  • 基本思想是:通过设计干扰观测器来估计未知干扰,并在前馈通道中予以补偿,从而达到有效地抑制干扰的目的。
  • 控制器包含两部分:一个反馈控制器和一个基于干扰观测器的前馈控制器。

1)反馈控制器用来跟踪和镇定被控系统的标称部分,这一部分不必考虑干扰或不确定性的存在;

2)干扰观测器来估计控制系统的千扰或不确定性;

3)前馈控制器来加以补偿。

对于非线性系统观测器一般形式:

仿照线性系统观测器之设计方法,很多情况下 k 为如下形式

观测器设计的关键是如何设计增益矩阵 L ,使观测器之输出渐近趋向于原系统的真实状态

1类 Lyapunov 方法(Lyapunov-like Methods)

问题则又转化为:如何寻找 k 使误差方程(1.2.6)具有稳定的平衡点零的问题

eg:Lipschitz 非线性系统

1.1 需要在已知增益矩阵L的前提下设计:

的微分小于零,因而误差方程在平衡点稳定,这说明(1.2.12)是 Lipschitz 系统的渐近观测器。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值