导读
多智能体系统协同控制领域的研究重点:一致性问题、编队控制、群集效应、蜂拥理论、空间聚集、分布式滤波与优化。集体行为的基本规则是什么呢?人们可以仅使用局部信息设计适当的控制协议来实现某些特定的集体运动吗?一致性问题,其核心目标是如何设计合适的控制协议或者机制使得网络中的所有节点的状态能够达到一致。
把实际问题转化为科学研究的范畴,离不开系统建模。把多智能系统抽象为点和边构成的网络系统,每个节点就代表实际中的每个智能体,智能体通过相互连接所构成的网络系统,体现智能体间的连接作用。
目录
一、无leader网络与leader-follower网络
1.1 无leader网络
无leader网络的含义是智能体通过彼此之间的信息交互实现协同,如图1所示。 是加权邻接矩阵,如果智能体可以收到智能体的信息,那么,否则 。 是耦合强度,表示智能体之间的连接紧密程度,与的值成正比。拉普拉斯矩阵被定义为,。一致性在数学上表示为,,当时间趋于无穷大时,状态趋于0。
图1 无领导者网络
1.2 leader-follower网络
在 leader-follower网络中存在领导者智能体,系统的调控目标是使得跟随者智能体和领导者智能体实现一致,如图2所示。与无领导者网络相比多了 参数,表示领导者的信息反馈在系统动态上。当且仅当存在从领导者到第i个节点的有向路径时。节点称为牵制节点或受控节点。其目的是通过控制少量的追随者,即牵制控制,来驱动追随者与领导者同步,公式化为:
图2 领导者跟随网络
1.3 分布式协同控制三要素
影响智能体群体行为的因素主要包含:智能体自身动态,网络拓扑(即智能体之间连接),通讯机制三个方面,如图3所示。阴影部分就称之为分布式控制协议。我们的目标是设计高效的分布式协同控制协议,尽可能多的减少智能体之间的通信,且保持系统性能。
图3 分布式协同控制三要素
高效的分布式控制协可分为时间触发机制和事件触发机制两种。
时间触发机制包括 分布式采样控制和 分布式脉冲控制;
事件触发机制包括 分布式事件触发控制;此外还有恶意攻击下的 弹性控制。