力扣题53最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [0]
输出:0

示例 4:

输入:nums = [-1]
输出:-1

示例 5:

输入:nums = [-100000]
输出:-100000

1.自己的解法。逐个遍历,然后如果当前子序和大于最大子序和的话,就把当前子序和作为新的最大子序和。然后如果当前子序和是负数的话,就说明这一段子序肯定会影响后面的最大子序和。

class Solution {
    public int maxSubArray(int[] nums) {
        int maxSum = nums[0];//初始化最大子序和
        int currentSum = 0;//初始化当前子序和
        
        for(int i = 0;i < nums.length;i++){//遍历数组
            currentSum += nums[i];

            if(currentSum > maxSum){//如果当前子序和大于最大子序和
                maxSum = currentSum;
            }

            if(currentSum < 0){//如果当前子序和小于0,就抛弃这部分子序
                currentSum = 0;
            }
        }

        return maxSum;
    }
}

2.答案解法。利用动态规划。

        方程:f(i)=max{f(i−1)+nums[i],nums[i]}

class Solution {
    public int maxSubArray(int[] nums) {
        int pre = 0, maxAns = nums[0];//初始化当前子序和与最大子序和
        for (int x : nums) {//遍历数组
            pre = Math.max(pre + x, x);//f(i)=max{f(i−1)+nums[i],nums[i]}
            maxAns = Math.max(maxAns, pre);//比较当前子序和与最大子序和
        }
        return maxAns;
    }
}

题源:力扣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值