python数据分析(文字版)

本文介绍了Python数据分析的基础,包括Numpy库的数组创建、属性及操作,以及Pandas库的DataFrame创建、读取本地文件和数据操作。通过实例展示了如何利用Numpy进行数据处理,使用Pandas进行数据读取、查询、修改和统计分析。
摘要由CSDN通过智能技术生成

一、Numpy数据处理库
import numpy as np
1.创建数组
方法1:np.array(元素列表) #括号中是一个可迭代对象,元组列表都可
如,arr_v1=np.array([1,2,3,4,5,6]) 这是一维数组;
arr_v2=np.array([[1,2,3,4],[3,4,5,6],[5,6,7,8]]) 这是一个3行4列的二维数组,列表套列表,注意要框起来变成一个总体

方法2:np.arange(初始值,终止值,步长值)
               np.linspace(初始值,终止值,数据个数)  #从初始值到终止值间均等的取n个值
                      
方法3:np.random.randint(初始值,终止值,size=(m,n))  #从初始值和终止值之间随机的选取整数,组成m行n列的数组
              可以给个随机种子,则每次产生一样  np.random.seed(25)
                     np.random.random(100)    #作用:产生0-1之间的100个小数    

2.数组的属性
.属性 #不用加括号,加括号就是方法
ndim: 数组的维度
size: 元素个数
shape: 数组的形状(m行n列) #返回一个元组
dtype: 数组的类型

3.数组的操作
访问元素,改变形状
3.1.访问元素
方法1:索引切片 原则:先行后列,下标从0开始
e.g. arr_v1[0,0] 访问第0行第0列的元素

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值