Polyhedra(多面体)

1. Polyhedra(多面体)定义

多面体 P P P 是通过有限数量的线性不等式线性等式定义的解集。具体定义为:
P = { x ∣ a j T x ≤ b j , j = 1 , … , m , c j T x = d j , j = 1 , … , p } P = \{ x \mid a_j^T x \leq b_j, \quad j = 1, \ldots, m, \quad c_j^T x = d_j, \quad j = 1, \ldots, p \} P={xajTxbj,j=1,,m,cjTx=dj,j=1,,p}
这里:

  • x x x 是变量向量。
  • a j a_j aj c j c_j cj 是向量,分别定义了不等式和等式的方向。
  • b j b_j bj d j d_j dj 是对应的不等式和等式的常数项。

这意味着,多面体可以被看作是**若干半空间(halfspaces)和超平面(hyperplanes)**的交集。每个不等式 a j T x ≤ b j a_j^T x \leq b_j ajTxbj 描述了一个半空间,而每个等式 c j T x = d j c_j^T x = d_j cjTx=dj​ 描述了一个超平面。多面体是这些几何对象的相交区域,因此可以包含多维边、顶点等几何特征。


不等式的作用

定义中的不等式 a j T x ≤ b j a_j^T x \leq b_j ajTxbj 描述了一个半空间。它的主要作用是限制多面体的形状并形成其边界。

  • 半空间:不等式 a j T x ≤ b j a_j^T x \leq b_j ajTxbj 定义了一个超平面 a j T x = b j a_j^T x = b_j ajTx=bj 以及这个超平面的一侧区域。所有满足 a j T x ≤ b j a_j^T x \leq b_j ajTxbj 的点都位于该超平面的一侧,这一侧就是称为半空间。
  • 限制空间:不等式的作用是在空间中限制可行解的位置,即通过每个不等式形成了一个“墙”或“边界”,将解限制在特定的区域。多面体的边界通常是这些不等式交集形成的。
  • 不等式的数量:多面体的维度取决于有多少个不等式。每个不等式都限制了空间的一部分,因此通过多个不等式的交集,我们获得了一个封闭的区域。

例如,假设我们在二维空间中有以下两个不等式:
x 1 ≤ 1 , x 2 ≤ 1 x_1 \leq 1, \quad x_2 \leq 1 x11,x21
这两个不等式分别在 x 1 x_1 x1 x 2 x_2 x2 方向上设置了边界,定义了一个矩形区域。这说明不等式在给定方向上设置了边界,形成了多面体的某些面。

等式的作用

定义中的等式 c j T x = d j c_j^T x = d_j cjTx=dj 描述了一个超平面。它的主要作用是通过将解限制在特定的超平面上,减少解的自由度。

  • 超平面:等式 c j T x = d j c_j^T x = d_j cjTx=dj 定义了一个在空间中的超平面,即所有满足这个等式的点都必须位于该超平面上。

  • 约束解的自由度:等式强制解集位于特定的几何位置,减少了多面体的维度。等式将空间的自由度减少。例如,在 R 3 \mathbb{R}^3 R3 中,一个等式会将三维空间限制在一个二维的超平面上。

  • 等式的数量:等式的数量决定了解的自由度。例如,假设我们有两个等式:
    x 1 + x 2 = 1 , x 3 = 0 x_1 + x_2 = 1, \quad x_3 = 0 x1+x2=1,x3=0
    在这种情况下,这两个等式将把解集限制在三维空间中的一个线段上,实际上这会降低维度。

不等式和等式共同作用的结果

  • 不等式决定了解的边界,定义了多面体的形状。通过不等式交集,多面体得到了它的面、边和顶点。
  • 等式则通过限制解所在的超平面,减少维度,控制多面体的结构。如果没有等式,解集的维度将与不等式约束的空间维度相同。如果有等式,则等式会将解集限制在一个更低维的子空间中。

: 设想我们有以下线性系统:
x 1 + x 2 ≤ 2 , x 1 ≥ 0 , x 2 ≥ 0 x_1 + x_2 \leq 2, \quad x_1 \geq 0, \quad x_2 \geq 0 x1+x22,x10,x20
这些不等式在二维空间中描述了一个三角形区域,这是一个多面体。

如果我们再增加一个等式约束:
x 1 + x 2 = 1 x_1 + x_2 = 1 x1+x2=1
这个等式将多面体从二维空间中的三角形限制为一个线段,因为它将所有解限制在 x 1 + x 2 = 1 x_1 + x_2 = 1 x1+x2=1这个直线上。这说明等式通过减少自由度,将二维解集限制为一维线段。

因此

  • 不等式定义了半空间,通过限制空间区域来形成多面体的边界和面。
  • 等式定义了超平面,通过减少自由度,将解集限制在特定的子空间上。

不等式决定了多面体的形状和外边界,等式则通过约束解的自由度来减少其维度,二者共同作用形成最终的多面体结构。


2. 多面体的性质

  • 凸集:多面体是凸集(convex sets)。这是因为不等式定义的半空间和等式定义的超平面都是凸集,而多个凸集的交集仍然是一个凸集。因此,所有的多面体本质上都是凸的。
  • 有界和无界的多面体:如果多面体是有界的,它也可以被称为polytopes(多胞体)。多胞体是一种特殊的多面体,所有的点都在有限的范围内。

3. 紧凑表示法(简化表达)

为了简化表示,引入了矩阵表示法,将多个不等式和等式用矩阵来表示:
P = { x ∣ A x ⪯ b ,   C x = d } P = \{x \mid Ax \preceq b, \ Cx = d\} P={xAxb, Cx=d}
其中:

  • A A A 是不等式 a j T x ≤ b j a_j^T x \leq b_j ajTxbj 的系数矩阵,它包含了所有不等式的系数 a j T a_j^T ajT
  • C C C 是等式 c j T x = d j c_j^T x = d_j cjTx=dj 的系数矩阵,它包含了所有等式的系数 c j T c_j^T cjT
  • ⪯ \preceq 符号表示逐元不等式(componentwise inequality),即对于每个 j j j,我们都有 A j T x ≤ b j A_j^T x \leq b_j AjTxbj 的约束。

4. 非负正交体

非负正交体(nonnegative orthant),是定义为所有非负分量的点集:
R + n = { x ∈ R n ∣ x i ≥ 0 ,   i = 1 , … , n } \mathbb{R}_+^n = \{ x \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \dots, n \} R+n={xRnxi0, i=1,,n}
这个非负正交体实际上是由 n n n​ 个不等式组成的多面体:
x i ≥ 0 x_i \geq 0 xi0
这些不等式定义了所有在坐标轴上位于正半空间的点。因此,非负正交体是一个多面体,并且也是一个锥体(cone),因此被称为“polyhedral cone”(多面锥体)。

5. 总结

  • 多面体是由有限数量的线性不等式和线性等式定义的解集,是半空间超平面的交集。
  • 它们总是凸集,而有界的多面体有时称为多胞体
  • 非负正交体是一个特殊的多面体,定义了所有分量非负的点集。
  • 通过几何图像可以直观地看到,多面体是多个平面交集形成的封闭区域。
基于python实现的粒子群的VRP(车辆配送路径规划)问题建模求解+源码+项目文档+算法解析,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 算法设计的关键在于如何向表现较好的个体学习,标准粒子群算法引入惯性因子w、自我认知因子c1、社会认知因子c2分别作为自身、当代最优解和历史最优解的权重,指导粒子速度和位置的更新,这在求解函数极值问题时比较容易实现,而在VRP问题上,速度位置的更新则难以直接采用加权的方式进行,一个常见的方法是采用基于遗传算法交叉算子的混合型粒子群算法进行求解,这里采用顺序交叉算子,对惯性因子w、自我认知因子c1、社会认知因子c2则以w/(w+c1+c2),c1/(w+c1+c2),c2/(w+c1+c2)的概率接受粒子本身、当前最优解、全局最优解交叉的父代之一(即按概率选择其中一个作为父代,不加权)。 算法设计的关键在于如何向表现较好的个体学习,标准粒子群算法引入惯性因子w、自我认知因子c1、社会认知因子c2分别作为自身、当代最优解和历史最优解的权重,指导粒子速度和位置的更新,这在求解函数极值问题时比较容易实现,而在VRP问题上,速度位置的更新则难以直接采用加权的方式进行,一个常见的方法是采用基于遗传算法交叉算子的混合型粒子群算法进行求解,这里采用顺序交叉算子,对惯性因子w、自我认知因子c1、社会认知因子c2则以w/(w+c1+c2),c1/(w+c1+c2),c2/(w+c1+c2)的概率接受粒子本身、当前最优解、全局最优解交叉的父代之一(即按概率选择其中一个作为父代,不加权)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xy_optics

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值