1. Polyhedra(多面体)定义
多面体
P
P
P 是通过有限数量的线性不等式和线性等式定义的解集。具体定义为:
P
=
{
x
∣
a
j
T
x
≤
b
j
,
j
=
1
,
…
,
m
,
c
j
T
x
=
d
j
,
j
=
1
,
…
,
p
}
P = \{ x \mid a_j^T x \leq b_j, \quad j = 1, \ldots, m, \quad c_j^T x = d_j, \quad j = 1, \ldots, p \}
P={x∣ajTx≤bj,j=1,…,m,cjTx=dj,j=1,…,p}
这里:
- x x x 是变量向量。
- a j a_j aj、 c j c_j cj 是向量,分别定义了不等式和等式的方向。
- b j b_j bj、 d j d_j dj 是对应的不等式和等式的常数项。
这意味着,多面体可以被看作是**若干半空间(halfspaces)和超平面(hyperplanes)**的交集。每个不等式 a j T x ≤ b j a_j^T x \leq b_j ajTx≤bj 描述了一个半空间,而每个等式 c j T x = d j c_j^T x = d_j cjTx=dj 描述了一个超平面。多面体是这些几何对象的相交区域,因此可以包含多维边、顶点等几何特征。
不等式的作用:
定义中的不等式 a j T x ≤ b j a_j^T x \leq b_j ajTx≤bj 描述了一个半空间。它的主要作用是限制多面体的形状并形成其边界。
- 半空间:不等式 a j T x ≤ b j a_j^T x \leq b_j ajTx≤bj 定义了一个超平面 a j T x = b j a_j^T x = b_j ajTx=bj 以及这个超平面的一侧区域。所有满足 a j T x ≤ b j a_j^T x \leq b_j ajTx≤bj 的点都位于该超平面的一侧,这一侧就是称为半空间。
- 限制空间:不等式的作用是在空间中限制可行解的位置,即通过每个不等式形成了一个“墙”或“边界”,将解限制在特定的区域。多面体的边界通常是这些不等式交集形成的。
- 不等式的数量:多面体的维度取决于有多少个不等式。每个不等式都限制了空间的一部分,因此通过多个不等式的交集,我们获得了一个封闭的区域。
例如,假设我们在二维空间中有以下两个不等式:
x
1
≤
1
,
x
2
≤
1
x_1 \leq 1, \quad x_2 \leq 1
x1≤1,x2≤1
这两个不等式分别在
x
1
x_1
x1 和
x
2
x_2
x2 方向上设置了边界,定义了一个矩形区域。这说明不等式在给定方向上设置了边界,形成了多面体的某些面。
等式的作用:
定义中的等式 c j T x = d j c_j^T x = d_j cjTx=dj 描述了一个超平面。它的主要作用是通过将解限制在特定的超平面上,减少解的自由度。
-
超平面:等式 c j T x = d j c_j^T x = d_j cjTx=dj 定义了一个在空间中的超平面,即所有满足这个等式的点都必须位于该超平面上。
-
约束解的自由度:等式强制解集位于特定的几何位置,减少了多面体的维度。等式将空间的自由度减少。例如,在 R 3 \mathbb{R}^3 R3 中,一个等式会将三维空间限制在一个二维的超平面上。
-
等式的数量:等式的数量决定了解的自由度。例如,假设我们有两个等式:
x 1 + x 2 = 1 , x 3 = 0 x_1 + x_2 = 1, \quad x_3 = 0 x1+x2=1,x3=0
在这种情况下,这两个等式将把解集限制在三维空间中的一个线段上,实际上这会降低维度。
不等式和等式共同作用的结果:
- 不等式决定了解的边界,定义了多面体的形状。通过不等式交集,多面体得到了它的面、边和顶点。
- 等式则通过限制解所在的超平面,减少维度,控制多面体的结构。如果没有等式,解集的维度将与不等式约束的空间维度相同。如果有等式,则等式会将解集限制在一个更低维的子空间中。
例: 设想我们有以下线性系统:
x
1
+
x
2
≤
2
,
x
1
≥
0
,
x
2
≥
0
x_1 + x_2 \leq 2, \quad x_1 \geq 0, \quad x_2 \geq 0
x1+x2≤2,x1≥0,x2≥0
这些不等式在二维空间中描述了一个三角形区域,这是一个多面体。
如果我们再增加一个等式约束:
x
1
+
x
2
=
1
x_1 + x_2 = 1
x1+x2=1
这个等式将多面体从二维空间中的三角形限制为一个线段,因为它将所有解限制在
x
1
+
x
2
=
1
x_1 + x_2 = 1
x1+x2=1这个直线上。这说明等式通过减少自由度,将二维解集限制为一维线段。
因此
- 不等式定义了半空间,通过限制空间区域来形成多面体的边界和面。
- 等式定义了超平面,通过减少自由度,将解集限制在特定的子空间上。
不等式决定了多面体的形状和外边界,等式则通过约束解的自由度来减少其维度,二者共同作用形成最终的多面体结构。
2. 多面体的性质
- 凸集:多面体是凸集(convex sets)。这是因为不等式定义的半空间和等式定义的超平面都是凸集,而多个凸集的交集仍然是一个凸集。因此,所有的多面体本质上都是凸的。
- 有界和无界的多面体:如果多面体是有界的,它也可以被称为polytopes(多胞体)。多胞体是一种特殊的多面体,所有的点都在有限的范围内。
3. 紧凑表示法(简化表达)
为了简化表示,引入了矩阵表示法,将多个不等式和等式用矩阵来表示:
P
=
{
x
∣
A
x
⪯
b
,
C
x
=
d
}
P = \{x \mid Ax \preceq b, \ Cx = d\}
P={x∣Ax⪯b, Cx=d}
其中:
- A A A 是不等式 a j T x ≤ b j a_j^T x \leq b_j ajTx≤bj 的系数矩阵,它包含了所有不等式的系数 a j T a_j^T ajT。
- C C C 是等式 c j T x = d j c_j^T x = d_j cjTx=dj 的系数矩阵,它包含了所有等式的系数 c j T c_j^T cjT。
- ⪯ \preceq ⪯符号表示逐元不等式(componentwise inequality),即对于每个 j j j,我们都有 A j T x ≤ b j A_j^T x \leq b_j AjTx≤bj 的约束。
4. 非负正交体
非负正交体(nonnegative orthant),是定义为所有非负分量的点集:
R
+
n
=
{
x
∈
R
n
∣
x
i
≥
0
,
i
=
1
,
…
,
n
}
\mathbb{R}_+^n = \{ x \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \dots, n \}
R+n={x∈Rn∣xi≥0, i=1,…,n}
这个非负正交体实际上是由
n
n
n 个不等式组成的多面体:
x
i
≥
0
x_i \geq 0
xi≥0
这些不等式定义了所有在坐标轴上位于正半空间的点。因此,非负正交体是一个多面体,并且也是一个锥体(cone),因此被称为“polyhedral cone”(多面锥体)。
5. 总结
- 多面体是由有限数量的线性不等式和线性等式定义的解集,是半空间和超平面的交集。
- 它们总是凸集,而有界的多面体有时称为多胞体。
- 非负正交体是一个特殊的多面体,定义了所有分量非负的点集。
- 通过几何图像可以直观地看到,多面体是多个平面交集形成的封闭区域。