从基于物理模型的图像去雾到如今learning-based的去雾工作,数据集的好坏始终是一个关键的问题。借着读A Comprehensive Review on Analysis and Implementation of Recent Image Dehazing Methods的机会,也总结一下目前一些主流的图像去雾数据集(21年以前的),供大家参考,欢迎大家评论区交流学习!
Frida Dataset
论文:Vision enhancement in homogeneous and heterogeneous fog
使用SiVIC 软件生成 66 张虚拟仿真图像,每个无雾图像包含 4 个有雾图像和一个深度图,如图 21 所示。该数据集考虑四种类型的雾:均匀雾、非均匀雾、多云雾和多云非均匀雾。主要是为了在有雾的情况下提供更清晰的道路视图,以最大限度地减少事故。
Fattal’s Dataset
论文:Dehazing using color-lines
Fattal 数据集是经典的雾霾图像数据集之一,包含了许多标志性的合成和真实世界的雾霾图像。该数据集提供了12张合成雾霾图像,以及31张来自真实环境的有雾图像。
Waterloo IVC
论文:Perceptual evaluation of single image dehazing algorithms
有一部分和Fattal’s Dataset重复,包括25张来自室外和室内环境的真实模糊图像。其中,22张室外图像是基于不同雾霾浓度拍摄的真实雾霾图像,涵盖了从薄雾到浓雾的多种场景;3张室内图像则通过物理模型模拟生成,具有一定的参考价值。
500 Foggy Images
论文:Referenceless prediction of perceptual fog density and perceptual image defogging
有500张自然雾图像,组成这些图像包括不同的尺寸、不同的雾密度(从轻雾到浓雾)以及多样的图像内容
D-Hazy
论文:D-HAZY: a dataset to evaluate quantitatively dehazing algorithms
使用 Middlebury 和 NYU 深度数据集生成包含超过1400对合成的室内雾霾图像。
Semantic Understanding of Foggy Scenes
论文:Semantic foggy scene understanding with synthetic data
该数据集结合了合成和真实的有雾场景,包含有雾的城市景观图像和驾驶场景图像。其中驾驶场景由101个带有注释的真实雾天道路场景组成,保留了原图像的语义标注,可以做雾天环境下的语意理解。
Haze RD Dataset
论文:Hazerd: an outdoor scene dataset and benchmark for single image dehazing
由15个真实雾霾场景的图像组成,每个场景模拟了五种不同的天气条件,从薄雾到浓雾不等,覆盖了可见光范围从50米到1000米的不同情境。
I-Haze Dataset
论文:I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images
I-Haze 数据集包含35对室内有雾和无雾图像,其中有雾图像是由专业雾霾机产生的,确保了雾霾效果的真实再现。每一对图像的拍摄条件相同,照明条件一致。
O-Haze
论文:O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images
O-Haze 数据集包含45个室外场景,每个场景有成对的真实有雾图像和无雾图像。类似于I-Haze,该数据集的雾霾效果也是由专业雾霾机模拟产生。
Dense-Haze
论文:Dense haze: a benchmark for image dehazing with dense-haze and haze-free images
包含33对真实世界的有雾和无雾图像,主要用于高密度雾霾场景的去雾算法的测试与评估。
RESIDE
论文:Benchmarking single-image dehazing and beyond
最经典和主流评价的数据集:RESIDE 。一个大规模图像数据集,包含两个子集:RESIDE standard 和 RESIDE-β。RESIDE standard 包括三个主要子集:室内训练测试集(ITS)、综合客观测试集(SOTS)和混合主观测试集(HSTS)。ITS 由NYU2和Middlebury立体室内数据集的1399张无雾图像生成,每个无雾图像对应生成10张合成有雾图像。SOTS 包含由NYU2生成的500张具有白色场景和浓雾的图像,这些图像未在训练集中使用。HSTS 包括10张合成的户外雾霾图像和10张真实的雾霾图像。RESIDE-β包含两个子集:户外训练集(OTS),该子集包含72,135张模糊图像;现实世界任务驱动测试集(RTTS),该子集包含4322张图像,适用于更为复杂的雾霾去除任务。
NH-Haze
论文:NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and hazefree images
NH-Haze 数据集包含55张真实的户外有雾图像以及对应的无雾图像。这些图像也是由专业雾霾机生成。