近年来,随着深度学习技术的快速发展,图像去雾任务成为计算机视觉领域的重要研究方向之一。高质量的数据集是算法研究的基础,本文将介绍一些常用的图像去雾数据集,包括其特点、应用场景以及下载地址。
1. RESIDE 数据集
RESIDE(REalistic Single Image DEhazing)数据集是目前最常用的图像去雾数据集之一。该数据集提供了多种规模的子数据集,主要分为以下几部分:
-
Indoor Training Set (ITS): 室内合成雾图像及对应的无雾图像。
-
Outdoor Training Set (OTS): 室外合成雾图像及对应的无雾图像。
-
SOTS (Synthetic Objective Testing Set): 用于测试的合成数据,分为室内和室外两部分。
-
HazeRD: 包含真实的雾天图像和近似无雾的对比图像。
特点:
-
数据量大,包含合成和真实图像。
-
适用于训练和测试深度学习模型。
下载地址:
ITS (Indoor Training Set):
(Baidu Yun):http://tinyurl.com/yaohd3yv Passward: g0s6
OTS (Outdoor Training Set): https://pan.baidu.com/s/1YMYUp5P6FpX_5b7emjgrvA
Passward: w54h
SOTS (Synthetic Objective Testing Set):
(Baidu Yun): https://pan.baidu.com/share/init?surl=SSVzR058DX5ar5WL5oBTLg
Passward: s6tu
HSTS (Hybrid Subjective Testing Set):
(Baidu Yun):https://pan.baidu.com/s/1cl1exWnaFXe3T5-Hr7TJIg
Passward: vzeq
2. D-Hazy 数据集
D-Hazy 是基于 Middlebury 数据集生成的合成雾图像数据集,主要用于深度估计和去雾任务。
特点:
-
使用真实场景图像生成的合成数据,具有较高的真实性。
-
提供与雾浓度相关的深度图信息。
3. O-HAZE 数据集
O-HAZE 是一个室外真实雾天图像数据集,拍摄于受控环境下,提供无雾与有雾场景的配对图像。
特点:
-
真实场景,无需担心合成数据的域偏差问题。
-
适合验证算法在真实场景中的性能。
下载地址:http://www.vision.ee.ethz.ch/ntire18/o-haze
4. I-HAZE 数据集
I-HAZE 是一个室内真实雾天图像数据集,与 O-HAZE 类似,提供配对的有雾与无雾图像。
特点:
-
室内场景,更关注细节还原能力。
-
雾的分布均匀,适合控制变量实验。
下载地址:http://www.vision.ee.ethz.ch/ntire18/i-haze
5. Foggy Cityscapes 数据集
Foggy Cityscapes 是在 Cityscapes 数据集的基础上,使用物理模型生成的合成雾图像数据集,专为自动驾驶和语义分割任务设计。
特点:
-
聚焦于城市街景,具有丰富的语义标注。
-
支持分割和检测任务的联合研究。
下载地址:https://opendatalab.org.cn/OpenDataLab/Foggy_Cityscapes
6. Dense-Haze 数据集
Dense-Haze 是 NTIRE 比赛推出的另一个真实雾天数据集,主要关注浓雾条件下的去雾问题。
特点:
-
高浓度雾条件,具有挑战性。
-
包含真实场景和高质量标注。
下载地址:http://tinyurl.com/yaohd3yv
总结
上述数据集涵盖了室内、室外、真实和合成等多种场景,可以满足不同研究需求。在选择数据集时,建议根据具体任务的应用场景和目标选择合适的数据集,例如真实雾天图像适合模型的实际应用验证,而合成数据则适合模型的快速迭代和训练。
希望本文能为从事图像去雾研究的朋友提供一些帮助!