动态规划:二维费用的背包问题

本文探讨了二维费用的背包问题,其中包含N件物品,每件有体积vi、重量mi和价值wi。目标是找到使物品总体积不超过背包容量V、总重量不超过最大重量M时价值最大化的物品组合。通过动态规划方法,定义状态dp[i][j][k]表示前i个物品中选择,总体积不超过j,总重量不超过k时的最大价值。状态转移方程为dp[i][j][k]=max{dp[i−1][j][k],dp[i][j−vi][k−mi]+wi}。文章还讨论了如何通过优化空间复杂度将问题解决在二维数组上,降低到O(V*M)的空间复杂度。" 79629328,7406687,使用FrameLayout动态加载Fragment,"['Android开发', '移动开发', 'UI设计', '布局管理']
摘要由CSDN通过智能技术生成


本篇文章已同步更新至github仓库JavaSummary,欢迎star!

往期

  1. 01背包问题
  2. 完全背包问题
  3. 多重背包问题I
  4. 多重背包问题II
  5. 混合背包问题

题目

二维费用的背包问题

N N N 件物品和一个容量是 V V V 的背包,背包能承受的最大重量是 M M M

每件物品只能用一次。体积是 v i v_{i} vi,重量是 m i m_{i} mi,价值是 w i w_{i} wi

求解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数, N , V , M N,V,M N,V,M,用空格隔开,分别表示物品件数、背包容积和背包可承受的最大重量。

接下来有 N N N 行,每行三个整数 v i , m i , w i v_{i},m_{i},w_{i} vi,mi,wi,用空格隔开,分别表示第 i i i 件物品的体积、重量和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N ≤ 1000 0<N≤1000 0<N

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xylitolz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值