矩阵相关

定义

矩阵 A=(aij) ,通常用大写字母表示
交换矩阵的行列得到转置矩阵,记作 AT
(AB)T=BTAT
证明: (AB)Tij=kajkbki=kbkiajk=(BTAT)ij
向量是一维数组,长度为 n 的向量称为n向量
向量的标准形式定义为列向量,即n×1的矩阵
单位矩阵:只有对角线上的元素为1,其余为0的方阵, n×n 的单位矩阵写作 In
所有元素均为0的矩阵为零矩阵
上三角矩阵:对于任意 i>j ,有 aij=0 ;如果对角线上元素为1,则为单位上三角矩阵
下三角矩阵:对于任意 i<j ,有 aij=0 ;如果对角线上元素为1,则为单位下三角矩阵
排列矩阵:每行每列有且仅有一个1,其余位置为0
对称矩阵 A=AT
矩阵加(减)法和矩阵乘法就不啰嗦了
如果 x,y n 向量,则xTy=i=1nxiyi,得到一个数值,称为 x,y 的内积;矩阵 xyT n×n 矩阵,称为 x,y 的外积。
定义 n 向量x(欧几里得)范式 x=x21+x22+...+x2n=xTx ,表示其在 n 维欧几里得空间内的长度

性质

对于n×n的方阵 A ,如果存在矩阵A1使得 AA1=A1A=In ,则说方阵 A 可逆的,或非奇异的,A1称为 A 的逆矩阵;
反之,如果不存在这样的矩阵,则说方阵A不可逆的,或奇异
1.如果 A,B 都是非奇异的 n×n 矩阵,则
(BA)1=A1B1
证明:把 BA 代进去算就行了
2. (A1)T=(AT)1
证明: AT(A1)T=(A1A)T=ITn=In(A1)t=(AT)1
3.如果A,B都是n阶方阵, AB=IBA=I
证明: A=IA=AI=(AB)A=A(BA)A(IBA)=0I=BA
如果存在不全为0的相关系数 c1,c2,...,cn ,使得 i=1ncixi=0 ,则称 x1,x2,...,xn 线性相关的;反之是线性无关
非零矩阵 A 列秩A的最大线性无关列集合的大小,行秩同理
同一个矩阵的行秩=列秩,所以可统称为
关于线性无关列集合的理解,可以认为是n维空间下的一组基底,用这组基底可以表示出矩阵中所有的行或列向量,如果集合大小为 n ,那么这个矩阵中的n个行(列)向量可以通过调整系数表示n维空间中的任一向量
矩阵的k阶子式表示从原矩阵中选出k行k列,相交的k2个元素按原矩阵中的相对位置组成的新矩阵
矩阵的最高阶非零子式表示阶数最大且行列式不为0的子式,我们可以通过行变换得到类上三角矩阵(实际是下部分为0的阶梯型矩阵),选择k个非零行的首非零元所在列作为最高阶非零子式的列;通过列变换得到最高阶非零子式的行,然后就得到最高阶非零子式了
最高阶非零子式中所选的行(列)向量(不是该子式中的向量)可以作为基底表示矩阵中的其他行(列)向量,即它们是最大线性无关组,所以矩阵的秩也是最高阶非零子式的阶数

如果 n×n 方阵的秩为 n ,则它是满秩
方阵满秩方阵非奇异
等下再证明
n×n(n>1) 矩阵 A i j 列子矩阵是一个删除i j 后得到的(n1)×(n1)矩阵 A[ij] ,递归定义得到该矩阵的行列式
det(A)=a11i=1n(1)1+ia1 idet(A[1i])n=1n>1
det(A) 也可以通过逆序对来计算,简单来说就是枚举全排列 P=pi ,然后累乘 ai pi ,符号由逆序对奇偶决定
det(A)=p[1,n](1)pi=1nai pi
有时 det(A) 也写作 |A|
(1)i+jdet(A[ij]) 称为 aij 代数余子式
从第二个计算方法容易发现,交换矩阵的任意两行(列),行列式的符号改变
证明:有一个比较好玩的定理

对于一个1~n的排列,任意交换两个不同位置上的元素,逆序对的奇偶性一定发生变化

设交换元素 x,y ,讨论一下它们之间有多少比x,y大(小)的,模拟一下就得出来了
也就是对于新 det(A) 中累和后面的每一项与原 det(A) 中累和后面对应的每一项符号相反,绝对值相同

把矩阵 A 的某一行(或列)的若干倍加到另一行(或列)上,det(A)不变

证明:
用第二个方法来搞,假设我们把矩阵 A y行上的元素的 k 倍加到第x行上,设此时矩阵为 A ,那么
det(A)=p(1)p(ax px+kay px)ixai pi=p(1)piai pi+kp(1)pay pxixai pi
前面那部分就是 det(A) ,后面的部分,累乘后面存在一项 ay py ,显然 pxpy ,那么必定存在另一项中的 ay. 交换了 px,py ,其余项不变,此时正负号改变,相互抵消,所以后面那项就是0了
列加列时同理

除此之外还有一些行列式的性质

某行(或列)全为0 det(A)=0 ;
某行(或列)都乘一个数 k ,行列式变为原来的k倍;
原矩阵和转置矩阵的行列式相等(假设n个元素有两个属性 a,b 且a,b各是[1,n]的一个排列,任意两个元素 i,j 间比较, (ai>aj,bi<bj) 的元素对和 (ai<aj,bi>bj) 的元素对是一样多的,因为对称,然后就可以考虑第二种求行列式的方式了)

如果 A,B 都是 n 阶方阵,那么det(AB)=det(A)det(B)
构造 2n 阶矩阵 AI0B
从行列式的定义出发,对它产生贡献的就是左上和右下,就是 det(A)det(B)
我们对这个矩阵进行变换,把 bij 乘第 i 列分别加到第n+j列上( 1i,jn )(可以在纸上模拟一下),矩阵就变成了这个样子
AIAB0
产生贡献的是右上和左下,但每次额外产生 n2 个逆序对,所以答案是 (1)n2det(AB)det(I)=(1)n(n+1)det(AB)=det(AB)
矩阵变换后行列式不变,所以 det(A)det(B)=det(AB)
伴随矩阵
写作 A Aij=Mji ,即i行j列的代数余子式。简单来说,伴随矩阵就是原矩阵每一项换成对应的代数余子式,然后再转置一下
AA=AA=det(A)I
证明:
AA=kaik(1)k+jdet(A[j k])
ij 时,对于 det(A)[j k]) 中每一种排列方案(假设这种方案第 i 行选的是第t列),总能在 det(A)[j t] 找到一种对应方案使得第 i 行选的是第k列,其余位置不变,此时符号相反,绝对值相同,正好抵消;
i=j 时,式子正好就是行列式的计算,所以值为 det(A)
AA 同理
说一下上面的没给出的证明
如果方阵 A 可逆,那么存在AA1=I,两边取 det ,得到 det(AA1)=det(A)det(A1)=det(I)=1det(A)0 ,即 A 的n阶非零余子式存在,A的秩为 n (满秩)
如果方阵A满秩,则 det(A)01det(A) 存在,那么 A1=1det(A)A

添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值