leetcode -- Maximum Subarray -- 经典问题常考

本文详细介绍了LeetCode中经典问题‘Maximum Subarray’的三种解法,包括动态规划、逐个元素判断以及分治法。通过分析思路,展示了如何找出数组中连续子数组的最大和。
摘要由CSDN通过智能技术生成

https://leetcode.com/problems/maximum-subarray/

思路1:

假设A(0, i)区间存在k,使得[k, i]区间是以i结尾区间的最大值, 定义为Max[i], 换句话说max[i]是所有以nums[i]结尾的区间的和的最大值

同样定义max[i]。我们可以递推出max[i+1]与max[i]的关系。即在计算max[i+1]的过程中,最后结果是nums[i](当max[i] <=0)或者就是max[i] + nums[i] (当max[i] >0)。这样就可以跟普通DP一样scan一遍数组,求出max[0…n-1]所有值。

这里跟普通dp不太一样的就是,这里的dp数组的最大size的结果dp[n-1]不再是题目的解,而是dp数组的最大值才是题目的解,所以只要在计算max[i]时,做最大值判断就行。

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """

        if len(nums) == 0: return 0

        max = [0] * len(nums)
        max[0] = nums[0]

        res = max[0]
        for i in xrange(1, len(nums)):
            if max[i - 1] < 0:#因为要以nums[i]结尾的区间最大值,所以如果max[i - 1] < 0,那么最大值肯定是不加上max[i - 1]
                max[i] = nums[i]
            else:#所以如果max[i - 1] >= 0,那么最大值肯定是加上max[i - 1]
                max[i] = max[i - 1] + nums[i]
            if max[i] > res: res = max[i]

        return res

思路2:

参考http://fisherlei.blogspot.hk/2012/12/leetcode-maximum-subarray.html
假设A(0, i)区间存在k,使得[k, i]区间是以i结尾区间的最大值, 定义为Max[i],
在这里,当求取Max[i+1]时,

Max[i+1] = Max[i] + A[i+1], if (Max[i] + A[i+1] >0)
Max[i+1] = 0, if(Max[i]+A[i+1] <0)

如果和小于零,A[i+1]必为负数,没必要保留,舍弃掉

然后从左往右扫描,求取Max数字的最大值即为所求。

思路3:

用分治法
参考
http://fisherlei.blogspot.hk/2012/12/leetcode-maximum-subarray.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值