https://leetcode.com/problems/maximum-subarray/
思路1:
假设A(0, i)区间存在k,使得[k, i]区间是以i结尾区间的最大值, 定义为Max[i], 换句话说max[i]是所有以nums[i]结尾的区间的和的最大值
同样定义max[i]。我们可以递推出max[i+1]与max[i]的关系。即在计算max[i+1]的过程中,最后结果是nums[i](当max[i] <=0)或者就是max[i] + nums[i] (当max[i] >0)。这样就可以跟普通DP一样scan一遍数组,求出max[0…n-1]所有值。
这里跟普通dp不太一样的就是,这里的dp数组的最大size的结果dp[n-1]不再是题目的解,而是dp数组的最大值才是题目的解,所以只要在计算max[i]时,做最大值判断就行。
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if len(nums) == 0: return 0
max = [0] * len(nums)
max[0] = nums[0]
res = max[0]
for i in xrange(1, len(nums)):
if max[i - 1] < 0:#因为要以nums[i]结尾的区间最大值,所以如果max[i - 1] < 0,那么最大值肯定是不加上max[i - 1]
max[i] = nums[i]
else:#所以如果max[i - 1] >= 0,那么最大值肯定是加上max[i - 1]
max[i] = max[i - 1] + nums[i]
if max[i] > res: res = max[i]
return res
思路2:
参考http://fisherlei.blogspot.hk/2012/12/leetcode-maximum-subarray.html
假设A(0, i)区间存在k,使得[k, i]区间是以i结尾区间的最大值, 定义为Max[i],
在这里,当求取Max[i+1]时,
Max[i+1] = Max[i] + A[i+1], if (Max[i] + A[i+1] >0)
Max[i+1] = 0, if(Max[i]+A[i+1] <0)
如果和小于零,A[i+1]必为负数,没必要保留,舍弃掉
然后从左往右扫描,求取Max数字的最大值即为所求。
思路3:
用分治法
参考
http://fisherlei.blogspot.hk/2012/12/leetcode-maximum-subarray.html