大地坐标系(Geocentric Geodetic Coordinate System)与笛卡尔积坐标系(Geocentric Space Rectangular Coordinate System)

大地坐标系(Geocentric Geodetic Coordinate System)与笛卡尔积坐标系(Geocentric Space Rectangular Coordinate System)关系推导

大地坐标系到空间直角坐标系的转换推导

参考自方庆林

假定空间直角坐标系的原点位于地球参考椭球的中心,Z轴与地球自转轴平行并指向参考椭球的北极,X轴指向参考椭球的本初子午线,Y轴与X轴和Z轴相互垂直最终构成一个右手系。大地坐标系是以大地基准为基础建立起来的,大地基准又以参考椭球为基础,由此大地坐标系又被称为椭球坐标系。如下图所示:

在这里插入图片描述
根据图示,点 M 所在的经纬面截椭球体所得的椭圆为: 根据图示,点M所在的经纬面截椭球体所得的椭圆为: 根据图示,点M所在的经纬面截椭球体所得的椭圆为:
u 2 a 2 + z 2 b 2 = 1 (1) \tag{1} {\frac {u^2}{a^2} + \frac {z^2}{b^2} = 1} a2u2+b2z2=1(1)
其中 a 为椭球体长轴 , b 为椭球体短轴 , 椭球面焦点为 ( − c , 0 ) 和 ( c , 0 ) , 椭球面第一偏心率 e = a 2 − b 2 a 。 a , b , c 满足椭圆焦点计算公式: 其中a为椭球体长轴,b为椭球体短轴,椭球面焦点为(-c,0)和(c,0),椭球面第一偏心率e=\frac{\sqrt{a^2-b^2}}{a}。a,b,c满足椭圆焦点计算公式: 其中a为椭球体长轴,b为椭球体短轴,椭球面焦点为(c,0)(c,0),椭球面第一偏心率e=aa2b2 a,b,c满足椭圆焦点计算公式:
a 2 − b 2 = c 2 (2) \tag{2} {a^2-b^2=c^2} a2b2=c2(2)
且点 M 0 的椭球经纬度坐标为 ( L , B ) , 且点M_0的椭球经纬度坐标为(L,B), 且点M0的椭球经纬度坐标为(L,B),
设 M 0 M ⃗ 与地球椭球面位于点 M 0 处的重力铅垂线方向平行,点 M 位于铅垂线上,且距 M 0 的高度为 H ,即点 M 0 的法向量 n ⃗ ∥ F M 0 ⃗ , 点 M 0 = ( u 0 , z 0 ) , F = ( u F , 0 ) , M = ( u M , z M ) , 设\vec{M_0M}与地球椭球面位于点M_0处的重力铅垂线方向平行,点M位于铅垂线上,且距M_0的高度为H,即点M_0的法向量\vec n \parallel \vec{FM_0},点M_0=(u_0,z_0),F=(u_F,0),M=(u_M,z_M), M0M 与地球椭球面位于点M0处的重力铅垂线方向平行,点M位于铅垂线上,且距M0的高度为H,即点M0的法向量n FM0 ,M0=(u0,z0),F=(uF,0),M=(uM,zM),
则过点 M 0 的切线方程为: 则过点M_0的切线方程为: 则过点M0的切线方程为:
u 0 u a 2 + z 0 z b 2 = 1 (3) \tag{3} {\frac{u_0u}{a^2} + \frac{z_0z}{b^2}=1} a2u0u+b2z0z=1(3)
则存在 n ⃗ = ( u 0 a 2 , z 0 b 2 ) , ( 根据空间直线一般式方程AX+BY+CZ+D=0推得 ) 则存在\vec n = (\frac{u_0}{a^2}, \frac{z_0}{b^2}),(\fcolorbox{red}{aqua}{根据空间直线一般式方程AX+BY+CZ+D=0推得}) 则存在n =(a2u0,b2z0),(根据空间直线一般式方程AX+BY+CZ+D=0推得)
又 ∵ n ⃗ ∥ F M 0 ⃗ , 又 \because{\vec n \parallel \vec{FM_0}}, n FM0 ,
∴ u 0 − u F u 0 a 2 = z 0 − 0 z 0 b 2 \therefore \frac{u_0-u_F}{\frac{u_0}{a^2}} = \frac{z_0-0}{\frac{z_0}{b^2}} a2u0u0uF=b2z0z00
⇒ u 0 ( u 0 − u F ) a 2 = b 2 \Rightarrow \frac{u_0(u_0-u_F)}{a^2} = b^2 a2u0(u0uF)=b2
⇒ u 0 − u F = b 2 a 2 u 0 \Rightarrow u_0-u_F=\frac{b^2}{a^2}u_0 u0uF=a2b2u0
⇒ u F = u 0 ( 1 − b 2 a 2 ) (4) \Rightarrow \tag{4} u_F=u_0(1-\frac{b^2}{a^2}) uF=u0(1a2b2)(4)
 根据椭圆焦点计算公式(2)可得 \fcolorbox{red}{aqua}{ 根据椭圆焦点计算公式(2)可得}  根据椭圆焦点计算公式(2)可得
⇒ u F = u 0 c 2 a 2 (5) \Rightarrow \tag{5} {u_F=u_0 \frac{c^2}{a^2} } uF=u0a2c2(5)
根据图示存在: 根据图示存在: 根据图示存在:
tan ⁡ B = z 0 − z F u 0 − u F = z 0 u 0 − c 2 a 2 u 0 (6) \tag{6} {\tan B = \frac{z_0-z_F}{u_0-u_F}=\frac{z_0}{u_0-\frac{c^2}{a^2}u_0 }} tanB=u0uFz0zF=u0a2c2u0z0(6)
联合 ( 1 ) 和 ( 6 ) 有 : 联合(1)和(6)有: 联合(1)(6):
{ tan ⁡ B = z 0 u 0 − c 2 a 2 u 0 u 0 2 a 2 + z 0 2 b 2 = 1 (7) \tag{7} \begin{cases} \tan B = \frac{z_0}{u_0-\frac{c^2}{a^2}u_0 } \\ \frac {u_0^2}{a^2} + \frac {z_0^2}{b^2} = 1 \end{cases} tanB=u0a2c2u0z0a2u02+b2z02=1(7)
∵ tan ⁡ B = z 0 u 0 − c 2 a 2 u 0 \because \tan B = \frac{z_0}{u_0-\frac{c^2}{a^2}u_0 } tanB=u0a2c2u0z0
 根据椭圆焦点计算公式(2)可得 \fcolorbox{red}{aqua}{ 根据椭圆焦点计算公式(2)可得}  根据椭圆焦点计算公式(2)可得
∴ tan ⁡ B = z 0 b 2 a 2 u 0 \therefore \tan B = \frac{z_0}{\frac{b^2}{a^2}u_0 } tanB=a2b2u0z0
⇒ z 0 = b 2 a 2 u 0 tan ⁡ B (8) \Rightarrow \tag{8} z_0= \frac{b^2}{a^2} u_0 \tan B z0=a2b2u0tanB(8)
( 8 ) 式代入 ( 7 ) 方程组第二个方程得 : (8)式代入(7)方程组第二个方程得: (8)式代入(7)方程组第二个方程得:
u 0 2 a 2 + ( b 2 a 2 ) 2 u 0 2 tan ⁡ 2 B b 2 = 1 \frac {u_0^2}{a^2} + \frac { (\frac{b^2}{a^2})^2 {u_0}^2 \tan ^ 2 B } {b^2} = 1 a2u02+b2(a2b2)2u02tan2B=1
⇒ u 0 2 ( 1 a 2 + b 2 a 4 tan ⁡ 2 B ) = 1 \Rightarrow u_0^2 ( \frac{1}{a^2} + \frac{b^2}{a^4} \tan^2B) = 1 u02(a21+a4b2tan2B)=1
⇒ u 0 2 a 2 + b 2 tan ⁡ 2 B a 4 = 1 \Rightarrow u_0^2 \frac{a^2+b^2\tan^2B}{a^4} = 1 u02a4a2+b2tan2B=1
⇒ u 0 2 = a 4 a 2 + b 2 tan ⁡ 2 B \Rightarrow u_0^2 = \frac{a^4}{a^2+b^2\tan^2B} u02=a2+b2tan2Ba4
⇒ u 0 = a 2 a 2 + b 2 tan ⁡ 2 B (9) \Rightarrow \tag{9} u_0=\frac{a^2}{\sqrt{a^2+b^2\tan^2B}} u0=a2+b2tan2B a2(9)

( 9 ) 式代入 ( 4 ) 式得 (9)式代入(4)式得 (9)式代入(4)式得
u F = u 0 ( 1 − b 2 a 2 ) = a 2 a 2 + b 2 tan ⁡ 2 B a 2 − b 2 a 2 = a 2 − b 2 a 2 + b 2 tan ⁡ 2 B (10) \tag{10} u_F=u_0(1-\frac{b^2}{a^2})=\frac{a^2}{\sqrt{a^2+b^2\tan^2B}} \frac{a^2-b^2}{a^2}=\frac{a^2-b^2}{\sqrt{a^2+b^2\tan^2B}} uF=u0(1a2b2)=a2+b2tan2B a2a2a2b2=a2+b2tan2B a2b2(10)
由向量 F M 0 ⃗ 得 由向量\vec{FM_0}得 由向量FM0
∥ F M 0 ⃗ ∥ = ( u 0 − u F ) 2 + ( z 0 − 0 ) 2 (11) \tag{11} \parallel \vec{FM_0} \parallel = \sqrt{(u_0-u_F)^2 + (z_0-0)^2} FM0 ∥=(u0uF)2+(z00)2 (11)
由 ( 9 ) 式和 ( 10 ) 式得 由(9)式和(10)式得 (9)式和(10)式得
u 0 − u F = a 2 a 2 + b 2 tan ⁡ 2 B − a 2 − b 2 a 2 + b 2 tan ⁡ 2 B = b 2 a 2 + b 2 tan ⁡ 2 B (12) \tag{12} u_0-u_F = \frac{a^2}{\sqrt{a^2+b^2\tan^2B}} - \frac{a^2-b^2}{\sqrt{a^2+b^2\tan^2B}} = \frac{b^2}{\sqrt{a^2+b^2\tan^2B}} u0uF=a2+b2tan2B a2a2+b2tan2B a2b2=a2+b2tan2B b2(12)
( 9 ) 式代入 ( 8 ) 式得 (9)式代入(8)式得 (9)式代入(8)式得
z 0 = b 2 a 2 u 0 tan ⁡ B = b 2 a 2 a 2 a 2 + b 2 tan ⁡ 2 B tan ⁡ B = b 2 tan ⁡ B a 2 + b 2 tan ⁡ 2 B (13) \tag{13} z_0= \frac{b^2}{a^2} u_0 \tan B = \frac{b^2}{a^2} \frac{a^2}{\sqrt{a^2+b^2\tan^2B}} \tan B = \frac{b^2 \tan B}{\sqrt{a^2+b^2\tan^2B}} z0=a2b2u0tanB=a2b2a2+b2tan2B a2tanB=a2+b2tan2B b2tanB(13)
( 12 ) 式和 ( 13 ) 式代入 ( 11 ) 式得 (12)式和(13)式代入(11)式得 (12)式和(13)式代入(11)式得
∥ F M 0 ⃗ ∥ = ( b 2 ) 2 a 2 + b 2 tan ⁡ 2 B + ( b 2 ) 2 tan ⁡ 2 B a 2 + b 2 tan ⁡ 2 B \parallel \vec{FM_0} \parallel = \sqrt{ \frac{(b^2)^2}{a^2+b^2\tan^2B} + \frac{(b^2)^2\tan^2B}{a^2+b^2\tan^2B} } FM0 ∥=a2+b2tan2B(b2)2+a2+b2tan2B(b2)2tan2B
⇒ ∥ F M 0 ⃗ ∥ = b 2 1 + tan ⁡ 2 B a 2 + b 2 tan ⁡ 2 B (14) \Rightarrow \tag{14} \parallel \vec{FM_0} \parallel = b^2 \sqrt{\frac{1+\tan^2B}{a^2+b^2\tan^2B}} ⇒∥FM0 ∥=b2a2+b2tan2B1+tan2B (14)
根据三角公式 根据三角公式 根据三角公式
1 + tan ⁡ 2 B = sin ⁡ 2 B + cos ⁡ 2 B cos ⁡ 2 B = 1 cos ⁡ 2 B 1+\tan^2B = \frac{\sin^2B+\cos^2B}{\cos^2B}=\frac{1}{\cos^2B} 1+tan2B=cos2Bsin2B+cos2B=cos2B1
代入 ( 14 ) 式得 代入(14)式得 代入(14)式得
∥ F M 0 ⃗ ∥ = b 2 1 cos ⁡ 2 B a 2 cos ⁡ 2 B + b 2 sin ⁡ 2 B cos ⁡ 2 B = b 2 1 a 2 cos ⁡ 2 B + b 2 sin ⁡ 2 B \parallel \vec{FM_0} \parallel =b^2 \sqrt{ \frac{ \frac{1}{\cos^2B} }{ \frac{a^2\cos^2B+b^2\sin^2B}{\cos^2B} } } = b^2\sqrt{ \frac{1}{a^2\cos^2B+b^2\sin^2B} } FM0 ∥=b2cos2Ba2cos2B+b2sin2Bcos2B1 =b2a2cos2B+b2sin2B1
⇒ ∥ F M 0 ⃗ ∥ = b 2 a 1 cos ⁡ 2 B + b 2 a 2 sin ⁡ 2 B (15) \Rightarrow \tag{15} \parallel \vec{FM_0} \parallel = \frac{b^2}{a}\sqrt{ \frac{1}{\cos^2B+ \frac{b^2}{a^2}\sin^2B} } ⇒∥FM0 ∥=ab2cos2B+a2b2sin2B1 (15)
根据三角公式 根据三角公式 根据三角公式
cos ⁡ 2 B = 1 − sin ⁡ 2 B \cos^2B = 1- \sin^2B cos2B=1sin2B
代入 ( 15 ) 式得 代入(15)式得 代入(15)式得
∥ F M 0 ⃗ ∥ = b 2 a 1 1 − sin ⁡ 2 B + b 2 a 2 sin ⁡ 2 B \parallel \vec{FM_0} \parallel = \frac{b^2}{a}\sqrt{ \frac{1}{1- \sin^2B+ \frac{b^2}{a^2}\sin^2B} } FM0 ∥=ab21sin2B+a2b2sin2B1
⇒ ∥ F M 0 ⃗ ∥ = b 2 a 1 1 − a 2 − b 2 a 2 sin ⁡ 2 B \Rightarrow \parallel \vec{FM_0} \parallel = \frac{b^2}{a}\sqrt{ \frac{1}{1- \frac{a^2-b^2}{a^2}\sin^2B} } ⇒∥FM0 ∥=ab21a2a2b2sin2B1
⇒ ∥ F M 0 ⃗ ∥ = b 2 a 1 1 − c 2 a 2 sin ⁡ 2 B \Rightarrow \parallel \vec{FM_0} \parallel = \frac{b^2}{a}\sqrt{ \frac{1}{1- \frac{c^2}{a^2}\sin^2B} } ⇒∥FM0 ∥=ab21a2c2sin2B1
⇒ ∥ F M 0 ⃗ ∥ = b 2 a 1 1 − e 2 sin ⁡ 2 B , ( 根据椭球第一偏心率计算关系推得 ) \Rightarrow \parallel \vec{FM_0} \parallel = \frac{b^2}{a}\sqrt{ \frac{1}{1- e^2\sin^2B} },(\fcolorbox{red}{aqua}{根据椭球第一偏心率计算关系推得}) ⇒∥FM0 ∥=ab21e2sin2B1 ,(根据椭球第一偏心率计算关系推得)
⇒ ∥ F M 0 ⃗ ∥ = b 2 a 2 a 1 − e 2 sin ⁡ 2 B (16) \Rightarrow \tag{16} \parallel \vec{FM_0} \parallel = \frac{b^2}{a^2} \frac{a}{\sqrt{1- e^2\sin^2B}} ⇒∥FM0 ∥=a2b21e2sin2B a(16)
令 令
N = a 1 − e 2 sin ⁡ 2 B (17) \tag{17} N = \frac{a}{\sqrt{1- e^2\sin^2B}} N=1e2sin2B a(17)
( 17 ) 式代入 ( 16 ) 式得 (17)式代入(16)式得 (17)式代入(16)式得
∥ F M 0 ⃗ ∥ = b 2 a 2 N (18) \tag{18} \parallel \vec{FM_0} \parallel = \frac{b^2}{a^2} N FM0 ∥=a2b2N(18)

由 ( 10 ) 式得 由(10)式得 (10)式得
u F = a 2 − b 2 a 2 + b 2 tan ⁡ 2 B = c 2 a 2 + b 2 tan ⁡ 2 B u_F=\frac{a^2-b^2}{\sqrt{a^2+b^2\tan^2B}}=\frac{c^2}{\sqrt{a^2+b^2\tan^2B}} uF=a2+b2tan2B a2b2=a2+b2tan2B c2
⇒ u F = c 2 a 2 ( 1 + b 2 a 2 tan ⁡ 2 B ) = c 2 a 1 1 + b 2 a 2 tan ⁡ 2 B \Rightarrow u_F=\frac{c^2}{\sqrt{a^2(1+\frac{b^2}{a^2}\tan^2B)}}= \frac{c^2}{a} \frac{1}{\sqrt{1+\frac{b^2}{a^2}\tan^2B}} uF=a2(1+a2b2tan2B) c2=ac21+a2b2tan2B 1
⇒ u F = c 2 a 1 cos ⁡ 2 B cos ⁡ 2 B + b 2 a 2 sin ⁡ 2 B cos ⁡ 2 B \Rightarrow u_F=\frac{c^2}{a} \frac{1}{\sqrt{\frac{\cos^2B}{\cos^2B}+\frac{b^2}{a^2} \frac{\sin^2B}{\cos^2B}}} uF=ac2cos2Bcos2B+a2b2cos2Bsin2B 1
⇒ u F = c 2 a cos ⁡ B cos ⁡ 2 B + b 2 a 2 sin ⁡ 2 B = c 2 a cos ⁡ B 1 − sin ⁡ 2 B + b 2 a 2 sin ⁡ 2 B \Rightarrow u_F=\frac{c^2}{a} \frac{\cos B}{\sqrt{\cos^2B+\frac{b^2}{a^2} \sin^2B}}=\frac{c^2}{a} \frac{\cos B}{\sqrt{1-\sin^2B+\frac{b^2}{a^2} \sin^2B}} uF=ac2cos2B+a2b2sin2B cosB=ac21sin2B+a2b2sin2B cosB
⇒ u F = c 2 a cos ⁡ B 1 − c 2 a 2 sin ⁡ 2 B \Rightarrow u_F=\frac{c^2}{a} \frac{\cos B}{\sqrt{1-\frac{c^2}{a^2} \sin^2B}} uF=ac21a2c2sin2B cosB
⇒ u F = c 2 a 2 a cos ⁡ B 1 − e 2 sin ⁡ 2 B (19) \Rightarrow \tag{19} u_F=\frac{c^2}{a^2} \frac{a\cos B}{\sqrt{1-e^2 \sin^2B}} uF=a2c21e2sin2B acosB(19)
( 17 ) 式代入 ( 19 ) 式得 (17)式代入(19)式得 (17)式代入(19)式得
u F = c 2 a 2 N cos ⁡ B (20) \tag{20} u_F =\frac{c^2}{a^2} N \cos B uF=a2c2NcosB(20)

根据图示,存在关系 : 根据图示,存在关系: 根据图示,存在关系:
u M = u F + ( ∥ F M 0 ⃗ ∥ + H ) cos ⁡ B (21) \tag{21} u_M=u_F+(\parallel \vec{FM_0} \parallel + H)\cos B uM=uF+(FM0 +H)cosB(21)
( 18 ) 式和 ( 20 ) 式代入 ( 21 ) 式得 (18)式和(20)式代入(21)式得 (18)式和(20)式代入(21)式得
u M = c 2 a 2 N cos ⁡ B + ( b 2 a 2 N + H ) cos ⁡ B = ( N + H ) cos ⁡ B (22) \tag{22} u_M=\frac{c^2}{a^2} N \cos B + (\frac{b^2}{a^2} N + H)\cos B = (N+H)\cos B uM=a2c2NcosB+(a2b2N+H)cosB=(N+H)cosB(22)
根据图示,存在关系 : 根据图示,存在关系: 根据图示,存在关系:
z M = ( ∥ F M 0 ⃗ ∥ + H ) sin ⁡ B (23) \tag{23} z_M=(\parallel \vec{FM_0} \parallel + H)\sin B zM=(FM0 +H)sinB(23)
( 18 ) 式代入 ( 23 ) 式得 (18)式代入(23)式得 (18)式代入(23)式得
z M = ( b 2 a 2 N + H ) sin ⁡ B (24) \tag{24} z_M=(\frac{b^2}{a^2} N + H)\sin B zM=(a2b2N+H)sinB(24)
根据图示,存在关系 : 根据图示,存在关系: 根据图示,存在关系:
{ X = u M cos ⁡ L = ( N + H ) cos ⁡ B cos ⁡ L Y = u M sin ⁡ L = ( N + H ) cos ⁡ B sin ⁡ L Z = z M = ( b 2 a 2 N + H ) sin ⁡ B \begin{cases} X = u_M\cos L= (N+H)\cos B \cos L \\ Y = u_M\sin L = (N+H)\cos B \sin L \\ Z = z_M=(\frac{b^2}{a^2} N + H)\sin B \end{cases} X=uMcosL=(N+H)cosBcosLY=uMsinL=(N+H)cosBsinLZ=zM=(a2b2N+H)sinB

则椭球坐标系到空间直角坐标系的转换公式如下 : 则椭球坐标系到空间直角坐标系的转换公式如下: 则椭球坐标系到空间直角坐标系的转换公式如下:
{ X = ( N + H ) cos ⁡ B cos ⁡ L Y = ( N + H ) cos ⁡ B sin ⁡ L Z = ( b 2 a 2 N + H ) sin ⁡ B \begin{cases} X = (N+H)\cos B \cos L \\ Y = (N+H)\cos B \sin L \\ Z =(\frac{b^2}{a^2} N + H)\sin B \end{cases} X=(N+H)cosBcosLY=(N+H)cosBsinLZ=(a2b2N+H)sinB
其中, 其中, 其中,
N = a 1 − e 2 sin ⁡ 2 B , e = a 2 − b 2 a N = \frac{a}{\sqrt{1- e^2\sin^2B}},e=\frac{\sqrt{a^2-b^2}}{a} N=1e2sin2B a,e=aa2b2
e 为椭球面第一偏心率, a 为椭球体长半轴, b 为椭球体短半轴, c 为椭球面的正焦点长度。 e为椭球面第一偏心率,a为椭球体长半轴,b为椭球体短半轴,c为椭球面的正焦点长度。 e为椭球面第一偏心率,a为椭球体长半轴,b为椭球体短半轴,c为椭球面的正焦点长度。

又 ∵ b 2 a 2 = a 2 − c 2 a 2 = 1 − c 2 a 2 = 1 − e 2 又\because \frac{b^2}{a^2} = \frac{a^2-c^2}{a^2} = 1-\frac{c^2}{a^2} = 1-e^2 a2b2=a2a2c2=1a2c2=1e2
∴ 转换公式有如下形式: \therefore 转换公式有如下形式: 转换公式有如下形式:
{ X = ( N + H ) cos ⁡ B cos ⁡ L Y = ( N + H ) cos ⁡ B sin ⁡ L Z = ( ( 1 − e 2 ) N + H ) sin ⁡ B \begin{cases} X = (N+H)\cos B \cos L \\ Y = (N+H)\cos B \sin L \\ Z =((1-e^2)N + H)\sin B \end{cases} X=(N+H)cosBcosLY=(N+H)cosBsinLZ=((1e2)N+H)sinB

补充一个扁率 f 与第一偏心率 e 的关系: 补充一个扁率f与第一偏心率e的关系: 补充一个扁率f与第一偏心率e的关系:
f = a − b a , e = a 2 − b 2 a , c 2 = a 2 − b 2 , f=\frac{a-b}{a},e=\frac{\sqrt{a^2-b^2}}{a},c^2=a^2-b^2, f=aab,e=aa2b2 ,c2=a2b2,
⇒ e 2 = a 2 − b 2 a 2 \Rightarrow e^2=\frac{a^2-b^2}{a^2} e2=a2a2b2
⇒ 2 f − f 2 = 2 a − 2 b a − a 2 − 2 a b + b 2 a 2 \Rightarrow 2f-f^2=\frac{2a-2b}{a}-\frac{a^2-2ab+b^2}{a^2} 2ff2=a2a2ba2a22ab+b2
⇒ 2 f − f 2 = 2 a 2 − 2 a b − a 2 + 2 a b − b 2 a 2 = a 2 − b 2 a 2 = e 2 \Rightarrow 2f-f^2=\frac{2a^2-2ab-a^2+2ab-b^2}{a^2}=\frac{a^2-b^2}{a^2}=e^2 2ff2=a22a22aba2+2abb2=a2a2b2=e2

笛卡尔积空间直角坐标系到大地坐标系的转换推导

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值