三维七参数大地坐标系转换模型变换关系理解
[ Δ L Δ B Δ H ] = [ − sin L ( N + H ) cos B ρ cos L ( N + H ) cos B ρ 0 − sin B cos L M + H ρ − sin B sin L M + H ρ cos B M + H ρ cos B cos L sin B sin L sin B ] [ T x T y T z ] + [ N ( 1 − e 2 ) + H N + H tan B cos L N ( 1 − e 2 ) + H N + H tan B sin L − 1 − ( N + H ) − N e 2 sin 2 B M + H sin L ( N + H ) − N e 2 sin 2 B M + H cos L 0 − N e 2 sin B cos B sin L ρ N e 2 sin B cos B cos L ρ 0 ] [ R x R y R z ] + [ 0 − N M e 2 sin B cos B ρ ( N + H ) − N e 2 sin 2 B ] D + [ 0 0 N M a e 2 sin B cos B ρ 2 − e 2 s i n 2 B 1 − f sin B cos B ρ − N a ( 1 − e 2 sin 2 B ) M 1 − a ( 1 − e 2 sin 2 B ) sin 2 B ] [ Δ a Δ f ] (1) \tag{1} \begin{bmatrix} \varDelta L \\ \varDelta B \\ \varDelta H \end{bmatrix} = \begin{bmatrix} -\frac{ \sin{L} }{ (N+H)\cos{B} }\rho & \frac{ \cos{L} }{ (N+H)\cos{B} }\rho & 0 \\ \\ -\frac{\sin{B}\cos{L}}{M+H}\rho & -\frac{\sin{B}\sin{L}}{M+H}\rho & \frac{\cos{B}}{M+H}\rho \\ \\ \cos{B}\cos{L} & \sin{B}\sin{L} & \sin{B} \end{bmatrix} \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix} + \\ \begin{bmatrix} \frac{N(1-e^2)+H}{N+H}\tan{B}\cos{L} & \frac{N(1-e^2)+H}{N+H}\tan{B}\sin{L} & -1 \\ \\ -\frac{(N+H)-Ne^2\sin^2{B}}{M+H}\sin{L} & \frac{(N+H)-Ne^2\sin^2{B}}{M+H}\cos{L} & 0 \\ \\ -\frac{Ne^2\sin{B}\cos{B}\sin{L}}{\rho} & \frac{Ne^2\sin{B}\cos{B}\cos{L}}{\rho} & 0 \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} + \\ \begin{bmatrix} 0 \\ \\ -\frac{N}{M}e^2\sin{B}\cos{B}\rho \\ \\ (N+H)-Ne^2\sin^2{B} \end{bmatrix}D + \\ \begin{bmatrix} 0 & 0 \\ \\ \frac{N}{Ma}e^2\sin{B}\cos{B}\rho & \frac{2-e^2sin^2B}{1-f}\sin{B}\cos{B}\rho \\ \\ -\frac{N}{a}(1-e^2\sin^2{B}) & \frac{M}{1-a}(1-e^2\sin^2{B})\sin^2{B} \end{bmatrix} \begin{bmatrix} \varDelta{a} \\ \varDelta{f} \end{bmatrix} ⎣ ⎡ΔLΔBΔH⎦ ⎤=⎣ ⎡−(N+H)cosBsinLρ−M+HsinBcosLρcosBcosL(N+H)cosBcosLρ−M+HsinBsinLρsinBsinL0M+HcosBρsinB⎦ ⎤⎣ ⎡TxTyTz⎦ ⎤+⎣ ⎡N+HN(1−e2)+HtanBcosL−M+H(N+H)−Ne2sin2BsinL−ρNe2sinBcosBsinLN+HN(1−e2)+HtanBsinLM+H(N+H)−Ne2sin2BcosLρNe2sinBcosBcosL−100⎦ ⎤⎣ ⎡RxRyRz⎦ ⎤+⎣ ⎡0−MNe2sinBcosBρ(N+H)−Ne2sin2B⎦ ⎤D+⎣ ⎡0MaNe2sinBcosBρ−aN(1−e2sin2B)01−f2−e2sin2BsinBcosBρ1−aM(1−e2sin2B)sin2B⎦ ⎤[ΔaΔf](1)
式中:
式中:
式中:
e
2
:第一偏心率的平方,无量纲
e
2
=
2
f
−
f
2
;
e^2:第一偏心率的平方,无量纲e^2=2f-f^2;
e2:第一偏心率的平方,无量纲e2=2f−f2;
M
:地球椭球子午圈曲率半径,单位为米
(
m
)
,
M
=
a
(
1
−
e
2
)
(
1
−
e
2
sin
2
B
)
3
2
;
M:地球椭球子午圈曲率半径,单位为米(m),M=\frac{a(1-e^2)}{(1-e^2\sin^2{B})^{\frac{3}{2}}};
M:地球椭球子午圈曲率半径,单位为米(m),M=(1−e2sin2B)23a(1−e2);
N
:地球椭球卯酉圈曲率半径,单位为米
(
m
)
,
N
=
a
(
1
−
e
2
sin
2
B
)
1
2
;
N:地球椭球卯酉圈曲率半径,单位为米(m),N=\frac{a}{(1-e^2\sin^2{B})^{\frac{1}{2}}};
N:地球椭球卯酉圈曲率半径,单位为米(m),N=(1−e2sin2B)21a;
B
,
L
,
H
:点位纬度、经度、大地高,经纬度单位为弧度
(
r
a
d
)
,大地高单位为米
(
m
)
;
B,L,H:点位纬度、经度、大地高,经纬度单位为弧度(rad),大地高单位为米(m);
B,L,H:点位纬度、经度、大地高,经纬度单位为弧度(rad),大地高单位为米(m);
Δ
B
,
Δ
L
,
Δ
H
:点位在两个坐标系下的纬度差、经度差、大地高差,经纬度差值单位为角秒
(
′
′
)
,
大地高差值单位为米
(
m
)
;
\varDelta{B},\varDelta{L},\varDelta{H}:点位在两个坐标系下的纬度差、经度差、大地高差,经纬度差值单位为角秒(''),\\ 大地高差值单位为米(m);
ΔB,ΔL,ΔH:点位在两个坐标系下的纬度差、经度差、大地高差,经纬度差值单位为角秒(′′),大地高差值单位为米(m);
ρ
:角度与弧度间转换量,单位为角秒
(
′
′
)
,
ρ
=
180
×
3600
π
;
\rho:角度与弧度间转换量,单位为角秒(''),\rho=180 \times \frac{3600}{\pi};
ρ:角度与弧度间转换量,单位为角秒(′′),ρ=180×π3600;
a
,
Δ
a
:椭球长半轴和长半轴差,单位为米
(
m
)
;
a,\varDelta{a}:椭球长半轴和长半轴差,单位为米(m);
a,Δa:椭球长半轴和长半轴差,单位为米(m);
f
,
Δ
f
:椭球扁率和扁率差,无量纲;
f,\varDelta{f}:椭球扁率和扁率差,无量纲;
f,Δf:椭球扁率和扁率差,无量纲;
T
x
,
T
y
,
T
z
:平移参数,单位为米
(
m
)
;
T_x,T_y,T_z:平移参数,单位为米(m);
Tx,Ty,Tz:平移参数,单位为米(m);
R
x
,
R
y
,
R
z
:旋转参数,单位为角秒
(
′
′
)
;
R_x,R_y,R_z:旋转参数,单位为角秒('');
Rx,Ry,Rz:旋转参数,单位为角秒(′′);
D
:尺度参数,无量纲。
D:尺度参数,无量纲。
D:尺度参数,无量纲。
令
令
令
a
0
=
−
sin
L
(
N
+
H
)
cos
B
ρ
,
a
1
=
cos
L
(
N
+
H
)
cos
B
ρ
,
a_0=-\frac{ \sin{L} }{ (N+H)\cos{B} }\rho,a_1=\frac{ \cos{L} }{ (N+H)\cos{B} }\rho,
a0=−(N+H)cosBsinLρ,a1=(N+H)cosBcosLρ,
a
3
=
−
sin
B
cos
L
M
+
H
ρ
,
a
4
=
−
sin
B
sin
L
M
+
H
ρ
,
a
5
=
cos
B
M
+
H
ρ
,
a_3=-\frac{\sin{B}\cos{L}}{M+H}\rho,a_4=-\frac{\sin{B}\sin{L}}{M+H}\rho,a_5=\frac{\cos{B}}{M+H}\rho,
a3=−M+HsinBcosLρ,a4=−M+HsinBsinLρ,a5=M+HcosBρ,
a
6
=
cos
B
cos
L
,
a
7
=
sin
B
sin
L
,
a
8
=
sin
B
a_6=\cos{B}\cos{L},a_7=\sin{B}\sin{L},a_8=\sin{B}
a6=cosBcosL,a7=sinBsinL,a8=sinB
b
0
=
N
(
1
−
e
2
)
+
H
N
+
H
tan
B
cos
L
,
b
1
=
N
(
1
−
e
2
)
+
H
N
+
H
tan
B
sin
L
,
b_0=\frac{N(1-e^2)+H}{N+H}\tan{B}\cos{L},b_1=\frac{N(1-e^2)+H}{N+H}\tan{B}\sin{L},
b0=N+HN(1−e2)+HtanBcosL,b1=N+HN(1−e2)+HtanBsinL,
b
3
=
−
(
N
+
H
)
−
N
e
2
sin
2
B
M
+
H
sin
L
,
b
4
=
(
N
+
H
)
−
N
e
2
sin
2
B
M
+
H
cos
L
,
b_3=-\frac{(N+H)-Ne^2\sin^2{B}}{M+H}\sin{L},b_4=\frac{(N+H)-Ne^2\sin^2{B}}{M+H}\cos{L},
b3=−M+H(N+H)−Ne2sin2BsinL,b4=M+H(N+H)−Ne2sin2BcosL,
b
6
=
−
N
e
2
sin
B
cos
B
sin
L
ρ
,
b
7
=
N
e
2
sin
B
cos
B
cos
L
ρ
,
b_6=-\frac{Ne^2\sin{B}\cos{B}\sin{L}}{\rho},b_7=\frac{Ne^2\sin{B}\cos{B}\cos{L}}{\rho},
b6=−ρNe2sinBcosBsinL,b7=ρNe2sinBcosBcosL,
c
1
=
−
N
M
e
2
sin
B
cos
B
ρ
c_1=-\frac{N}{M}e^2\sin{B}\cos{B}\rho
c1=−MNe2sinBcosBρ
c
2
=
(
N
+
H
)
−
N
e
2
sin
2
B
c_2=(N+H)-Ne^2\sin^2{B}
c2=(N+H)−Ne2sin2B
d
2
=
N
M
a
e
2
sin
B
cos
B
ρ
,
d
3
=
2
−
e
2
s
i
n
2
B
1
−
f
sin
B
cos
B
ρ
d_2=\frac{N}{Ma}e^2\sin{B}\cos{B}\rho,d_3=\frac{2-e^2sin^2B}{1-f}\sin{B}\cos{B}\rho
d2=MaNe2sinBcosBρ,d3=1−f2−e2sin2BsinBcosBρ
d
4
=
−
N
a
(
1
−
e
2
sin
2
B
)
,
d
5
=
M
1
−
a
(
1
−
e
2
sin
2
B
)
sin
2
B
d_4=-\frac{N}{a}(1-e^2\sin^2{B}),d_5=\frac{M}{1-a}(1-e^2\sin^2{B})\sin^2{B}
d4=−aN(1−e2sin2B),d5=1−aM(1−e2sin2B)sin2B
则
(
1
)
式变换为:
则(1)式变换为:
则(1)式变换为:
[
Δ
L
Δ
B
Δ
H
]
=
[
a
0
a
1
0
a
3
a
4
a
5
a
6
a
7
a
8
]
[
T
x
T
y
T
z
]
+
[
b
0
b
1
−
1
b
3
b
4
0
b
6
b
7
0
]
[
R
x
R
y
R
z
]
+
[
0
c
1
c
2
]
D
+
[
0
0
d
2
d
3
d
4
d
5
]
[
Δ
a
Δ
f
]
=
[
a
0
T
x
+
a
1
T
y
+
0
T
z
+
b
0
R
x
+
b
1
R
y
−
1
R
z
+
0
D
a
3
T
x
+
a
4
T
y
+
a
5
T
z
+
b
3
R
x
+
b
4
R
y
+
0
R
z
+
c
1
D
a
6
T
x
+
a
7
T
y
+
a
8
T
z
+
b
6
R
x
+
b
7
R
y
+
0
R
z
+
c
2
D
]
+
[
0
d
2
Δ
a
+
d
3
Δ
f
d
4
Δ
a
+
d
5
Δ
f
]
(2)
\tag{2} \begin{bmatrix} \varDelta L \\ \varDelta B \\ \varDelta H \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & 0 \\ a_3 & a_4 & a_5 \\ a_6 & a_7 & a_8 \\ \end{bmatrix} \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix} + \begin{bmatrix} b_0 & b_1 & -1 \\ b_3 & b_4 & 0 \\ b_6 & b_7 & 0 \\ \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} + \begin{bmatrix} 0 \\ c_1 \\ c_2 \end{bmatrix}D + \begin{bmatrix} 0 & 0 \\ d_2 & d_3 \\ d_4 & d_5 \\ \end{bmatrix} \begin{bmatrix} \varDelta{a} \\ \varDelta{f} \end{bmatrix} \\ = \begin{bmatrix} a_0T_x+a_1T_y+ 0T_z+b_0R_x+b_1R_y-1R_z+0D \\ a_3T_x+a_4T_y+a_5T_z+b_3R_x+b_4R_y+0R_z+c_1D \\ a_6T_x+a_7T_y+a_8T_z+b_6R_x+b_7R_y+0R_z+c_2D \\ \end{bmatrix} + \begin{bmatrix} 0 \\ d_2\varDelta{a} + d_3\varDelta{f} \\ d_4\varDelta{a} + d_5\varDelta{f} \\ \end{bmatrix}
⎣
⎡ΔLΔBΔH⎦
⎤=⎣
⎡a0a3a6a1a4a70a5a8⎦
⎤⎣
⎡TxTyTz⎦
⎤+⎣
⎡b0b3b6b1b4b7−100⎦
⎤⎣
⎡RxRyRz⎦
⎤+⎣
⎡0c1c2⎦
⎤D+⎣
⎡0d2d40d3d5⎦
⎤[ΔaΔf]=⎣
⎡a0Tx+a1Ty+0Tz+b0Rx+b1Ry−1Rz+0Da3Tx+a4Ty+a5Tz+b3Rx+b4Ry+0Rz+c1Da6Tx+a7Ty+a8Tz+b6Rx+b7Ry+0Rz+c2D⎦
⎤+⎣
⎡0d2Δa+d3Δfd4Δa+d5Δf⎦
⎤(2)
又
∵
又\because
又∵
[
a
0
T
x
+
a
1
T
y
+
0
T
z
+
b
0
R
x
+
b
1
R
y
−
1
R
z
+
0
D
a
3
T
x
+
a
4
T
y
+
a
5
T
z
+
b
3
R
x
+
b
4
R
y
+
0
R
z
+
c
1
D
a
6
T
x
+
a
7
T
y
+
a
8
T
z
+
b
6
R
x
+
b
7
R
y
+
0
R
z
+
c
2
D
]
=
[
P
1
P
2
P
3
P
4
P
5
P
6
P
7
P
8
P
9
P
10
P
11
P
12
P
13
P
14
P
15
P
16
P
17
P
18
P
19
P
20
P
21
]
[
T
x
T
y
T
z
R
x
R
y
R
z
D
]
\begin{bmatrix} a_0T_x+a_1T_y+ 0T_z+b_0R_x+b_1R_y-1R_z+0D \\ a_3T_x+a_4T_y+a_5T_z+b_3R_x+b_4R_y+0R_z+c_1D \\ a_6T_x+a_7T_y+a_8T_z+b_6R_x+b_7R_y+0R_z+c_2D \\ \end{bmatrix} = \begin{bmatrix} P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & P_7 \\ P_8 & P_9 & P_{10} & P_{11} & P_{12} & P_{13} & P_{14} \\ P_{15} & P_{16} & P_{17} & P_{18} & P_{19} & P_{20} & P_{21} \end{bmatrix} \begin{bmatrix} T_x \\ T_y \\ T_z \\ R_x \\ R_y \\ R_z \\ D \end{bmatrix}
⎣
⎡a0Tx+a1Ty+0Tz+b0Rx+b1Ry−1Rz+0Da3Tx+a4Ty+a5Tz+b3Rx+b4Ry+0Rz+c1Da6Tx+a7Ty+a8Tz+b6Rx+b7Ry+0Rz+c2D⎦
⎤=⎣
⎡P1P8P15P2P9P16P3P10P17P4P11P18P5P12P19P6P13P20P7P14P21⎦
⎤⎣
⎡TxTyTzRxRyRzD⎦
⎤
⇒
\Rarr
⇒
P
1
=
a
0
,
P
2
=
a
1
,
P
3
=
0
,
P
4
=
b
0
,
P
5
=
b
1
,
P
6
=
−
1
,
P
7
=
0
,
P
8
=
a
3
,
P
9
=
a
4
,
P
10
=
a
5
,
P
11
=
b
3
,
P
12
=
b
4
,
P
13
=
0
,
P
14
=
c
1
P
15
=
a
6
,
P
16
=
a
7
,
P
17
=
a
8
,
P
18
=
b
6
,
P
19
=
b
7
,
P
20
=
0
,
P
21
=
c
2
P_1=a_0, P_2=a_1, P_3=0, P_4=b_0, P_5=b_1, P_6=-1, P_7=0, \\ P_8=a_3, P_9=a_4, P_{10}=a_5,P_{11}=b_3,P_{12}=b_4,P_{13}=0,P_{14}=c_1 \\ P_{15}=a_6,P_{16}=a_7,P_{17}=a_8,P_{18}=b_6,P_{19}=b_7,P_{20}=0,P_{21}=c_2
P1=a0,P2=a1,P3=0,P4=b0,P5=b1,P6=−1,P7=0,P8=a3,P9=a4,P10=a5,P11=b3,P12=b4,P13=0,P14=c1P15=a6,P16=a7,P17=a8,P18=b6,P19=b7,P20=0,P21=c2
∴
(
2
)
式变换为:
\therefore (2)式变换为:
∴(2)式变换为:
[
Δ
L
Δ
B
Δ
H
]
=
[
a
0
a
1
0
b
0
b
1
−
1
0
a
3
a
4
a
5
b
3
b
4
0
c
1
a
6
a
7
a
8
b
6
b
7
0
c
2
]
[
T
x
T
y
T
z
R
x
R
y
R
z
D
]
+
[
0
d
2
Δ
a
+
d
3
Δ
f
d
4
Δ
a
+
d
5
Δ
f
]
(3)
\tag{3} \begin{bmatrix} \varDelta L \\ \varDelta B \\ \varDelta H \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & 0 & b_0 & b_1 & -1 & 0 \\ a_3 & a_4 & a_5 & b_3 & b_4 & 0 & c_1 \\ a_6 & a_7 & a_8 & b_6 & b_7 & 0 & c_2 \end{bmatrix} \begin{bmatrix} T_x \\ T_y \\ T_z \\ R_x \\ R_y \\ R_z \\ D \end{bmatrix} + \begin{bmatrix} 0 \\ d_2\varDelta{a} + d_3\varDelta{f} \\ d_4\varDelta{a} + d_5\varDelta{f} \\ \end{bmatrix}
⎣
⎡ΔLΔBΔH⎦
⎤=⎣
⎡a0a3a6a1a4a70a5a8b0b3b6b1b4b7−1000c1c2⎦
⎤⎣
⎡TxTyTzRxRyRzD⎦
⎤+⎣
⎡0d2Δa+d3Δfd4Δa+d5Δf⎦
⎤(3)
基于最小二乘与多对同名点对计算参数
设存在
n
对同名点对:
(
L
a
,
B
a
,
H
a
)
1
→
(
L
b
,
B
b
,
H
b
)
1
,
⋯
,
(
L
a
,
B
a
,
H
a
)
n
→
(
L
b
,
B
b
,
H
b
)
n
.
设存在n对同名点对:(L_a,B_a,H_a)_1 \rarr (L_b,B_b,H_b)_1,\cdots,(L_a,B_a,H_a)_n \rarr (L_b,B_b,H_b)_n.
设存在n对同名点对:(La,Ba,Ha)1→(Lb,Bb,Hb)1,⋯,(La,Ba,Ha)n→(Lb,Bb,Hb)n.
令
令
令
θ
=
[
T
x
T
y
T
z
R
x
R
y
R
z
D
]
\theta =\begin{bmatrix} T_x \\ T_y \\ T_z \\ R_x \\ R_y \\ R_z \\ D \end{bmatrix}
θ=⎣
⎡TxTyTzRxRyRzD⎦
⎤
Δ
L
i
=
(
L
b
−
L
a
)
i
,
Δ
B
i
=
(
B
b
−
B
a
)
i
,
Δ
H
i
=
(
H
b
−
H
a
)
i
\varDelta{L}_i=(L_b-L_a)_i,\varDelta{B}_i=(B_b-B_a)_i,\varDelta{H}_i=(H_b-H_a)_i
ΔLi=(Lb−La)i,ΔBi=(Bb−Ba)i,ΔHi=(Hb−Ha)i
v
i
=
(
Δ
L
−
0
,
Δ
B
−
(
d
2
Δ
a
+
d
3
Δ
f
)
,
Δ
H
−
(
d
4
Δ
a
+
d
5
Δ
f
)
)
i
T
,
v_i=(\varDelta{L} - 0,\varDelta{B} - (d_2\varDelta{a} + d_3\varDelta{f}),\varDelta{H} - (d_4\varDelta{a} + d_5\varDelta{f}))^T_i,
vi=(ΔL−0,ΔB−(d2Δa+d3Δf),ΔH−(d4Δa+d5Δf))iT,
P
i
=
[
a
0
a
1
0
b
0
b
1
−
1
0
a
3
a
4
a
5
b
3
b
4
0
c
1
a
6
a
7
a
8
b
6
b
7
0
c
2
]
i
,
P_i= \begin{bmatrix} a_0 & a_1 & 0 & b_0 & b_1 & -1 & 0 \\ a_3 & a_4 & a_5 & b_3 & b_4 & 0 & c_1 \\ a_6 & a_7 & a_8 & b_6 & b_7 & 0 & c_2 \end{bmatrix}_i,
Pi=⎣
⎡a0a3a6a1a4a70a5a8b0b3b6b1b4b7−1000c1c2⎦
⎤i,
i
=
1
,
⋯
,
n
i=1,\cdots,n
i=1,⋯,n
根据式
(
3
)
,代入样本值得到方程组如下:
根据式(3),代入样本值得到方程组如下:
根据式(3),代入样本值得到方程组如下:
{
P
1
θ
=
v
1
P
2
θ
=
v
2
⋮
P
n
θ
=
v
n
\begin{dcases} P_1\theta = v_1 \\ P_2\theta = v_2 \\ \vdots \\ P_n\theta = v_n \end{dcases}
⎩
⎨
⎧P1θ=v1P2θ=v2⋮Pnθ=vn
则变换为矩阵方程为:
则变换为矩阵方程为:
则变换为矩阵方程为:
v
=
P
θ
v = P\theta
v=Pθ
P
=
[
P
1
P
2
⋮
P
n
]
,
v
=
[
v
1
v
2
⋮
v
n
]
P= \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{bmatrix}, v= \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}
P=⎣
⎡P1P2⋮Pn⎦
⎤,v=⎣
⎡v1v2⋮vn⎦
⎤
考虑
v
=
P
θ
无解,需要从
P
的列空间中找出最接近
v
的向量
u
(
u
可以理解为
v
在
P
的列空间中的投影,理解如下图所示:)
考虑v = P\theta无解,需要从P的列空间中找出最接近v的向量u(u可以理解为v在P的列空间中的投影,理解如下图所示:)
考虑v=Pθ无解,需要从P的列空间中找出最接近v的向量u(u可以理解为v在P的列空间中的投影,理解如下图所示:)
如上图所示,
p
是
b
在
[
a
1
a
2
]
列空间中的投影。
如上图所示,p是b在\begin{bmatrix} a_1 & a_2 \end{bmatrix} 列空间中的投影。
如上图所示,p是b在[a1a2]列空间中的投影。
令
e
=
v
−
u
,最小二乘就是找到
∥
e
∥
2
最小的点,最小二乘就是指向量长度的最小平方。
令e=v-u,最小二乘就是找到\parallel e \parallel^2最小的点,最小二乘就是指向量长度的最小平方。
令e=v−u,最小二乘就是找到∥e∥2最小的点,最小二乘就是指向量长度的最小平方。
由上可知,
u
位于
P
的列空间中,即
u
是
P
的各列的线性组合:
由上可知,u位于P的列空间中,即u是P的各列的线性组合:
由上可知,u位于P的列空间中,即u是P的各列的线性组合:
令
P
的列空间为
P
=
[
C
1
C
2
⋯
C
m
]
令P的列空间为 P= \begin{bmatrix} C_1 & C_2 & \cdots & C_m \end{bmatrix}
令P的列空间为P=[C1C2⋯Cm]
故存在
u
=
C
1
θ
1
~
+
C
2
θ
2
~
+
⋯
+
C
m
θ
m
~
故存在 u=C_1\tilde{\theta_1} + C_2\tilde{\theta_2} + \cdots + C_m\tilde{\theta_m}
故存在u=C1θ1~+C2θ2~+⋯+Cmθm~
即
P
θ
~
=
u
有解。
即P\tilde{\theta}=u有解。
即Pθ~=u有解。
e
=
v
−
u
=
v
−
P
θ
~
e=v-u=v-P\tilde{\theta}
e=v−u=v−Pθ~
e
正交于
P
的列空间,存在:
e正交于P的列空间,存在:
e正交于P的列空间,存在:
e
⊥
C
1
,
e
⊥
C
2
,
⋯
,
e
⊥
C
m
e \perp C_1,e \perp C_2,\cdots,e \perp C_m
e⊥C1,e⊥C2,⋯,e⊥Cm
由向量点积关系式可得: 由向量点积关系式可得: 由向量点积关系式可得:
⇒ { C 1 T ( v − P θ ~ ) = 0 C 2 T ( v − P θ ~ ) = 0 ⋮ C m T ( v − P θ ~ ) = 0 \Rarr \begin{dcases} C_1^T(v-P\tilde{\theta})=0 \\ C_2^T(v-P\tilde{\theta})=0 \\ \vdots \\ C_m^T(v-P\tilde{\theta})=0 \end{dcases} ⇒⎩ ⎨ ⎧C1T(v−Pθ~)=0C2T(v−Pθ~)=0⋮CmT(v−Pθ~)=0
⇒ [ C 1 T C 2 T C 3 T ⋮ C m T ] ( v − P θ ~ ) = [ 0 0 0 ⋮ 0 ] \Rarr \begin{bmatrix} C_1^T \\ C_2^T \\ C_3^T \\ \vdots \\ C_m^T \end{bmatrix} (v-P\tilde{\theta})= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} ⇒⎣ ⎡C1TC2TC3T⋮CmT⎦ ⎤(v−Pθ~)=⎣ ⎡000⋮0⎦ ⎤
∵
P
=
[
C
1
C
2
⋯
C
m
]
\because P= \begin{bmatrix} C_1 & C_2 & \cdots & C_m \end{bmatrix}
∵P=[C1C2⋯Cm]
∴
P
T
=
[
C
1
T
C
2
T
⋮
C
m
T
]
\therefore P^T = \begin{bmatrix} C_1^T \\ C_2^T \\ \vdots \\ C_m^T \end{bmatrix}
∴PT=⎣
⎡C1TC2T⋮CmT⎦
⎤
⇒
P
T
(
v
−
P
θ
~
)
=
0
\Rarr P^T(v-P\tilde{\theta})=0
⇒PT(v−Pθ~)=0
⇒
P
T
P
θ
~
=
P
T
v
\Rarr P^TP\tilde{\theta}=P^Tv
⇒PTPθ~=PTv
⇒
θ
~
=
(
P
T
P
)
−
1
P
T
v
\Rarr \tilde{\theta}=(P^TP)^{-1}P^Tv
⇒θ~=(PTP)−1PTv
即 θ ~ = ( P T P ) − 1 P T v 为基于最小二乘计算出来的最接近实际参数的转换值 即\tilde{\theta}=(P^TP)^{-1}P^Tv为基于最小二乘计算出来的最接近实际参数的转换值 即θ~=(PTP)−1PTv为基于最小二乘计算出来的最接近实际参数的转换值