机器学习模型部署

机器学习模型部署都有哪些坑?剑桥研究者梳理了99篇相关研究

MODNet:实时人像抠图模型-onnx python部署

在部署onnx时,将要推理的图像做简单的前处理,如果采用pytorch的transform则还需要安装pytorch,导致软件过大。此时,应该自己实现图像预处理程序。如normalize和resize

  • def normalize(self, im, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
    im = im.astype(np.float32, copy=False) / 255.0
    im -= mean
    im /= std
    return im
  • def resize(self, im, target_size=608, interp=cv2.INTER_LINEAR):
    if isinstance(target_size, list) or isinstance(target_size, tuple):
    w = target_size[0]
    h = target_size[1]
    else:
    w = target_size
    h = target_size
    im = cv2.resize(im, (w, h), interpolation=interp)

一步一步解读神经网络编译器TVM(一)——一个简单的例子
一步一步解读神经网络编译器TVM(二)——利用TVM完成C++端的部署

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要使用flask部署机器学习模型,可以按照以下步骤进行操作: 1. 准备模型和数据:首先,准备好训练好的机器学习模型以及用于预测的数据。确保模型可以正常工作并具有适当的输入和输出。 2. 安装Flask:使用pip或conda安装Flask,并确保安装过程中所需的依赖项也被正确安装。 3. 创建Flask应用程序:在Python文件中创建一个简单的Flask应用程序。导入必要的模块并创建一个Flask实例。 4. 定义路由和视图函数:通过定义Flask应用程序的路由和关联的视图函数,为模型部署创建端点。例如,可以使用@app.route装饰器定义一个路由,并编写一个处理该路由的视图函数。 5. 加载模型:在视图函数中加载先前准备好的机器学习模型。使用模型加载函数将模型加载到内存中。 6. 处理输入数据:根据模型的要求,处理来自请求的输入数据。可以在视图函数中获取请求参数,对其进行转换、归一化或其他必要的预处理操作。 7. 进行预测:使用加载的模型对预处理后的数据进行预测。调用模型的预测函数,并将处理后的数据传递给它。 8. 返回结果:将预测结果返回给客户端。可以将结果转换为JSON格式,并使用Flask的内置函数将其发送回客户端。 9. 运行应用程序:使用Flask的run()方法运行应用程序。在终端上执行python文件名.py打开服务,并访问相应的URL以调用预测。 通过以上步骤,就可以使用Flask部署机器学习模型。通过将模型和Flask应用程序结合起来,可以创建一个可以接收输入数据并返回预测结果的API。可以通过将此应用程序发布到云服务器或任何其他适当的部署地点来使其对外可用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值