文章目录
- 资源
- 超声图像去噪
- 超声图像噪声的特点
- 基于AI去噪
- FDDL-Net frequency domain decomposition learning for speckle reduction in ultrasound images(2022,高频与低频分支)
- Feature decomposition and enhancement for unsupervised medical ultrasound image denoising and instance segmentation(2023)
- MG-CNFNet---A multiple grained channel normalized fusion networks for medical image deblurring(2023,三个分支分别处理不同粒度的信息)
- Dual-TranSpeckle---Dual-pathway transformer based encoder-decoder network for medical ultrasound image despeckling(2024,双路模块和融合模块设计)
- Feature-guided CNN for denoising images from portable ultrasound devices(2021)
- A universal deep learning framework for real-time denoising of ultrasound images(2022) / Real‑time denoising of ultrasound images based on deep learning(2022)
- Image Noise Removal in Ultrasound Breast Images Based on Hybrid Deep Learning Technique(2023)
- PCANet based nonlocal means method for speckle noise removal in ultrasound images(2018)
- Medical ultrasound image speckle reduction and resolution enhancement using texture compensated multi-resolution convolution neural network(2022)
- Controllable Deep Learning Denoising Model for Ultrasound Images Using Synthetic Noisy Image (2024)
- Ultrasound image denoising autoencoder model based on lightweight attention mechanism(2024)
- Speckle noise reduction for medical ultrasound images based on cycle-consistent generative adversarial network(2023)
- Ultrasound speckle reduction using wavelet-based generative adversarial network(2022)
- Ultrasound Despeckling With GANs and Cross Modality Transfer Learning(2024)
- Despeckling of clinical ultrasound images using deep residual learning(2020)
- Deep neural network with deformable convolution and side window convolution for image denoising(2023)
- Residual dense network with non-residual guidance for blind image denoising(2023)
- Ultrasound image de-speckling by a hybrid deep network with transferred filtering and structural prior(2020)
- RED-MAM---A residual encoder-decoder network based on multi-attention fusion for ultrasound image denoising(2023)
- 传统去噪
- Improved non-local self-similarity measures for effective speckle noise reduction in ultrasound images(2020)
- Non-Local Based Denoising Framework for In Vivo Contrast-Free Ultrasound Microvessel Imaging(2019)
- A patch-based low-rank minimization approach for speckle noise reduction in ultrasound images(2021,低秩)
- Kernel PCA based non-local means method for speckle reduction in medical ultrasound images(2022)
- Multiplicative frequency and angular speckle reduction in ultrasound imaging(2023,乘法频率)
- Speckle reduction in medical ultrasound images using an unbiased non-local means method(2016,非局部)
- Ultrasound image despeckling using low rank matrix approximation approach(低秩近似)
资源
超声图像去噪
超声图像噪声的特点
散斑噪声( Speckle Noise)是超声图像的固有特征,具有乘法性。
斑点图案由非常明亮的斑点和类似的暗点组成,其中亮点干涉是高度结构化的,而暗点的干涉是破坏性的。
散斑噪声的表达式为:
g(n, m) = f (n, m) × u(n, m) + ξ(n, m)
g(n,m) represents the resulting image, u(n,m) is multiplicative component, and (n,m) is the additive component of speckle noise.
基于AI去噪
FDDL-Net frequency domain decomposition learning for speckle reduction in ultrasound images(2022,高频与低频分支)
FDDL-Net核心内容:作者提出了一种端到端的频域分解学习网络(FDDL-Net),利用频域分解在特征级别上学习超声图像的结构和细节信息,并通过交互式双分支框架进行噪声去除。
技术方法:
双分支框架:网络分为高频分支和低频分支,分别处理图像的细节信息和结构信息。
中值滤波器:在高频分支中使用中值滤波器有效去除噪声。
信息交互:两个分支之间进行信息交互,充分利用不同频率的有价值特征进行斑点噪声减少。
Feature decomposition and enhancement for unsupervised medical ultrasound image denoising and instance segmentation(2023)
这篇文章的核心内容是关于一种新的无监督学习方法,用于医学超声图像的去噪和实例分割。
- Dual Image (DI) 方法:提出了一种新颖的无监督学习方法,用于医学超声图像的去噪。这种方法不需要干净的医学超声图像作为训练数据,而是利用从医学超声图像中提取的噪声块(基于噪声块选择算法)和计算机断层扫描(CT)图像进行去噪。
- 噪声块选择算法:基于熵的概念提出了一种噪声块选择算法,有效地从医学超声图像中选择噪声块。
- 重建块设计:为了最小化去噪后医学超声图像的结构变化,设计了一种新的重建块,结合结构增强块中的结构信息。
- Segmenting on Ultrasound Image (SOUI) 方法:为了提高实例分割性能,将SOLOv2扩展到SOUI,通过提出双特征金字塔网络(D-FPN)和掩模融合分支来加强不同特征层的通信和融合。
MG-CNFNet—A multiple grained channel normalized fusion networks for medical image deblurring(2023,三个分支分别处理不同粒度的信息)
MG-CNFNet模型:提出了一种去模糊模型,该模型通过多粒度分解图像输入,并从细粒度到粗粒度进行级联特征提取。模型使用半通道自归一化来构建编码器,以丰富图像的多尺度信息,突出主要特征并提高去模糊性能。此外,模型还使用浅层卷积融合块(SCF)来获取更多浅层信息,并平衡去模糊的性能和效率。
methodology
- 多粒度分解:模型将输入图像分解为多个粒度级别,从细粒度到粗粒度进行特征提取,以实现图像的逐步恢复。
- 半通道自归一化(Semi-Channel Self-Normalization):通过构建编码器时采用半通道自归一化技术,增强了图像的多尺度信息,有助于突出主要特征并简化编码层,从而提高去模糊效率。
- 浅层卷积融合块(Shallow Convolutional Fusion Block, SCF):基于扩张卷积和标准卷积的组合,用于获取更多的浅层信息,这有助于平衡去模糊性能和效率。
- 编码器和解码器结构:模型采用了类似于U-Net的编码器-解码器结构,通过跳跃连接(skip connections)和上采样(upsampling)逐步恢复图像的细节。
- 注意力机制(Supervised Attention Mechanism, SAM):在相邻粒度之间使用注意力机制,以获取前一粒度的注意力映射特征,并将其传递到下一粒度,实现逐步学习。
- 特征融合:通过跨粒度特征融合(Cross-Grain Feature Fusion, CSFF)机制,巩固下一粒度子网的中间特征。
- 损失函数:模型的损失函数结合了Charbonnier损失和边缘损失(Edge Loss),以维持图像亮度并保留边缘信息。
Dual-TranSpeckle—Dual-pathway transformer based encoder-decoder network for medical ultrasound image despeckling(2024,双路模块和融合模块设计)
Dual-TranSpeckle(DTS)核心内容:提出了一种基于双路径Transformer的编码器-解码器网络,用于医学超声图像去斑点。DTS包含两条路径:语义路径(semantic path)和像素路径(pixel path),以并行方式传递图像内的特征信息。
主要模块:
Semantic Block(语义块):提取像素级特征中的全局语义信息。
Dual Block(双块):在编码阶段使语义和像素特征之间进行信息交互。
Merge Block(合并块):在解码阶段整合语义和像素特征,以实现特征信息的并行传递。
方法论:
- 编码器-解码器架构:DTS网络包含一个对称的编码器-解码器结构,每个级别的编码部分由多个Dual Blocks组成,解码部分由多个Merge Blocks组成。通过这种结构,模型能够在不同分辨率下有效地提取和融合特征。
- 多尺度特征提取:通过在编码器中逐步下采样和在解码器中逐步上采样,DTS能够在不同尺度上提取和细化特征。
- 双路径结构:DTS网络采用双路径Transformer结构,包含语义路径(semantic path)和像素路径(pixel path),以并行处理全局语义信息和局部像素特征。
- Dual Block(双块):Dual Block是编码阶段的一个创新模块,它通过多头自注意力(Multi-Head Transposed Attention, MHTA)机制,同时关注像素细节和语义信息,促进语义和像素特征之间的信息交互。
- Semantic Block(语义块):在语义路径中,Semantic Block被设计用于从像素级特征中提取全局语义信息。这些信息作为先验知识,用于指导像素路径生成更精细的局部特征图。
- Merge Block(合并块):在解码阶段,Merge Block被引入以整合语义和像素特征,允许模型通过两个路径进行自注意力计算和特征信息的并行传播。
- 损失函数:在训练过程中,DTS使用平滑L1损失函数(smooth l1 loss function),该函数在小距离值时提供稳定的梯度,有助于模型训练的稳定性。
Feature-guided CNN for denoising images from portable ultrasound devices(2021)
为了在保留重要特征信息的同时去除噪声,作者提出了一种新颖的去噪神经网络模型FDCNN。该模型采用分级去噪框架,并通过特征掩模层驱动医学图像去噪。
方法论:
- 特征检测(Feature Detection):
使用引导反向传播(Guided Backpropagation)作为可解释人工智能(XAI)的一种方法,用于提取医学图像的特征。该算法通过反向传播过程中只保留梯度大于零的路径,来突出显示网络激活最大的图像部分,从而避免噪声的影响。 - 噪声添加(Noise Addition):
在训练阶段,通过U-net网络基于引导反向传播提取特征掩模层,然后在非特征区域添加噪声。(噪声仅在没有医学特征信息的区域添加,以避免对图像中的重要特征造成干扰。) - FDCNN架构:
FDCNN模型的架构基于VGG网络和IRCNN改进而来,去除了最大池化层,并引入了扩张卷积来增加感受野。
使用批量归一化和残差学习来加速网络训练,并使用较小尺寸的训练图像来解决边界伪影问题。 - 图像融合(Image Fusion):
输入图像进入降噪网络进行残差学习,最后通过拉普拉斯金字塔融合算法将特征信息和去噪图像合并。- - 损失函数和优化:
在训练过程中,使用均方误差(MSE)作为损失函数来优化网络参数。
工作流程如下
A universal deep learning framework for real-time denoising of ultrasound images(2022) / Real‑time denoising of ultrasound images based on deep learning(2022)
文章定义了一个新的深度学习框架,用于实时去噪,通过比较现有的去噪方法,并选择了加权核范数最小化(Weighted Nuclear Norm Minimisation, WNNM)作为基础去噪方法。为了提高去噪图像的质量,作者提出了一种调整WNNM参数的新方法(tuned-WNNM)
方法论:
-
构建训练数据集的方法:
由于在超声应用中没有可用的真实图像,学习方法的目标是tuned-WNNM过滤器的输出。也就是说,tuned-WNNM用于生成训练数据集,通过对原始图像使用tuned-WNNM去噪,得到原始图像对应的去噪后的图像,将其作为训练的目标。 -
训练
训练一个神经网络来学习并复制tuned-WNNM的行为,使其得到和tuned-WNNM过滤器相似的去噪结果。 -
参数调优(tuned-WNNM)
为了提高去噪图像的质量,作者提出了一种调整WNNM参数的新方法。这包括调整搜索窗口、堆栈(3D块)和补丁大小等参数,以改善去噪效果。
Image Noise Removal in Ultrasound Breast Images Based on Hybrid Deep Learning Technique(2023)
提出并实现了一种新颖的超声乳腺图像去噪方法,该方法基于混合深度学习技术,结合了逻辑池循环神经网络(LPRNN)和引导滤波算法,以及空间高通滤波算法,形成了一个混合深度学习框架,用于超声图像去噪。
方法论:
- LPRNN架构:提出了一种新的神经网络结构,LPRNN,专门用于处理超声图像中的局部斑点噪声,同时保留图像的边缘信息和其他重要特征。
- 特征提取和增强:在预处理阶段,通过使用对数和指数变换来增强图像的对比度,并通过引导滤波算法增强腺体超声图像的细节。
- 空间高通滤波:在预处理中使用空间高通滤波算法,以减少图像引导滤波引入的过度锐化效果。
- 边缘信息保护:在去噪过程中,通过LPRNN中的边缘敏感项,有效地保护了图像的边缘信息,这对于后续的图像分析和诊断至关重要。
- 图像预处理:
对超声乳腺图像进行对齐和标准化处理。
利用对数和指数变换增强图像对比度。
应用图像引导滤波算法增强图像细节。
使用空间高通滤波算法减少过度锐化。
PCANet based nonlocal means method for speckle noise removal in ultrasound images(2018)
(1)背景知识:
原始的PCANet(Principal Component Analysis Network)并不是一个神经网络结构,尽管它在某些方面受到了深度神经网络的启发。PCANet的核心是利用主成分分析(PCA)来提取特征,PCANet的组成主要包括以下几个步骤:
- 多阶段PCA卷积:PCANet使用PCA来学习一系列卷积核,这些卷积核用于从图像块中提取特征。这个过程类似于神经网络中的卷积层,但使用的是PCA而不是传统的卷积操作。
- 二进制哈希:在原始PCANet中,第一层的输出会通过一个二进制哈希层,这个过程将实数特征转换为二进制特征,增加了特征的稀疏性。
- 分块直方图:二进制哈希层的输出会被分成多个块,并在每个块内计算直方图,以生成最终的特征表示。
尽管PCANet在设计上借鉴了深度学习的一些概念,如层次化特征提取,但它与传统的神经网络不同。PCANet缺少了神经网络中的关键元素,如非线性激活函数(在PCANet中,二进制哈希可以看作一种非线性操作,但它与传统的激活函数不同),以及反向传播算法用于参数更新和网络训练。
(2)改进的PCANet模型:
文章中提出的改进PCANet模型对原始PCANet进行了修改,主要变化包括:
- 使用PReLU激活函数:替代了原始PCANet中的二进制哈希和分块直方图。PReLU(参数修正线性单元)是一种非线性激活函数,它通过引入负值的额外结构信息来帮助保留图像细节。
- 两个卷积层:改进的PCANet包含两个卷积层,第一层产生L1个特征图,第二层将这些特征图作为输入并产生L2个输出。
改进的PCANet模型的工作原理是,首先通过训练PCANet获得卷积滤波器核,然后通过两个卷积层提取特征,最后使用PReLU激活函数来保持特征的准确性和鲁棒性。这种方法不需要正则化参数或数值优化求解器,使得PCANet的训练过程非常简单高效。
(3)NLM方法的应用
改进的PCANet用于提取噪声图像的预去噪版本中的图像块的内在特征,然后基于这些特征计算NLM方法中图像块之间的结构相似性,并据此计算搜索窗口中所有像素的加权平均值,以产生最终的去噪图像。
(4)整体工作流程:
本文提出的基于PCANet的非局部均值(NLM)方法的工作流程可以概括为以下几个主要步骤:
- 预处理:
原始含噪超声图像首先通过优化的贝叶斯非局部均值(OBNLM)滤波器进行预处理,以减少噪声并估计噪声标准差。 - PCANet模型训练:
使用公开的超声图像数据库对PCANet模型进行训练,学习卷积核参数。
训练涉及将图像块的均值去除,并通过PCA算法找到主要的卷积核,以及后续的二值化和直方图生成。 - 特征提取:
使用训练好的PCANet模型从预处理后的图像中提取特征。
图像块通过PCA滤波器进行卷积操作,产生多级特征图。 - 相似性权重计算:
基于提取的特征,为NLM方法构建特征向量。
计算搜索窗口内所有图像块之间的结构相似性,利用提取的特征向量和高斯加权欧几里得距离。 - 图像恢复:
利用结构相似性权重和预设的衰减参数,通过NLM方法恢复每个像素值,生成去噪图像。 - 相似性权重的细化:
将步骤5中得到的去噪图像再次输入到PCANet模型中,提取新的特征图像。
利用这些特征图像重新计算结构相似性,以改进相似性权重。 - 最终去噪图像的输出:
根据步骤6中细化的相似性权重,再次应用NLM方法来生成最终的去噪超声图像。
Medical ultrasound image speckle reduction and resolution enhancement using texture compensated multi-resolution convolution neural network(2022)
文章提出了一种图像增强方法,通过同时增强超声图像的分辨率和抑制噪声来改善整体图像质量。为避免过度平滑并保留结构/纹理信息,文章中提出了一种纹理补偿方法,以保留有用的解剖特征。此外,还利用超声图像形成物理知识生成增强数据集,以改善训练方法。
方法论:
- 数据增强:
利用超声图像形成物理知识生成数据增强集,通过向现有数据集添加不同的斑点噪声和分辨率变化,以提高模型的泛化能力和对不同噪声水平的鲁棒性。 - 噪声抑制网络:
使用类似UNET的深度编码器-解码器结构,该结构通过密集连接的跳跃路径来有效准确地训练网络,目的是去除超声图像中的斑点噪声。 - 分辨率/纹理增强网络:
在去噪后的图像基础上,使用一个分辨率增强网络,该网络利用多尺度特征来增强图像中的纹理线索,改善图像质量。
—分辨率/纹理增强网络采用了多尺度扩张卷积块(MRCB),它利用不同扩张率的扩张卷积来提取不同尺度的上下文信息,这有助于保留图像中的高频/纹理信息。
Controllable Deep Learning Denoising Model for Ultrasound Images Using Synthetic Noisy Image (2024)
文章提出了一种灵活且轻量级的深度学习去噪方法。首先,使用大量自然图像训练卷积神经网络以获得预训练的去噪模型。然后,利用平面波成像技术(plane-wave imaging)生成模拟的噪声超声图像,对预训练模型进行进一步的迁移学习。最终,得到了一个非盲的、轻量级、快速且准确的去噪器。
- 方法细节:
使用平面波成像技术生成与干净自然图像相对应的大量噪声超声图像,构成训练数据集。
利用FFDNet作为基础网络,该网络采用灵活高效的网络架构进行图像去噪。
通过迁移学习,将预训练模型的参数转移到新的模型中,以提高对超声图像中特定噪声的去噪能力。
引入噪声水平图来调节去噪器的去噪强度,提高模型的灵活性。
Ultrasound image denoising autoencoder model based on lightweight attention mechanism(2024)
文章提出了一种新的轻量级注意力去噪-卷积神经网络(LAD-CNN)模型。该模型在编码和解码阶段分别引入了两种不同的轻量级注意力块(即轻量级通道注意力(LCA)块和轻量级大核注意力(LLA)块),并在上采样层前加入了跳跃连接以减轻反向传播过程中梯度消失的问题。
损失函数:采用均方误差(MSE)函数和总变分(TV)正则化函数来计算损失。
Speckle noise reduction for medical ultrasound images based on cycle-consistent generative adversarial network(2023)
开发一种基于CycleGAN的超声去斑方法,通过在有噪声数据域和无噪声数据域之间形成双向通用映射的风格转换来实现。
方法论:
-
在CycleGAN模型中设计了有噪声和无噪声图像的输入。
-----由于临床上没有可用的无噪声超声图像,作者使用Gabor的各向异性扩散(GAD)算法对临床图像进行初步去噪,并用新提出的边缘噪声比(ENR)度量标准选择高质量的去噪图像作为无噪声图像。
-----使用乘法模型和空间脉冲响应模型从无噪声图像生成有噪声图像,用于模拟工作和模型训练。 -
网络结构:
使用CycleGAN进行双向风格转换,以实现从有噪声图像到无噪声图像的转换。CycleGAN包含两套生成器(G和F)和鉴别器(DY和DX),用于在两个方向上训练模型。
生成器:使用基于ResNet的生成器,利用残差块来提取和保留图像特征。
鉴别器:使用基于PatchGAN的鉴别器,通过映射输入图像到一个小区域矩阵来评估生成图像的质量。 -
损失函数:CycleGAN的损失函数由三部分组成:对抗性损失、循环一致性损失和身份损失。这些损失函数共同确保生成的图像既能够欺骗鉴别器,又能保持与原始输入图像的一致性。
-
评估指标:对于合成图像,使用峰值信噪比(PSNR)、均方根误差(RMSE)、平均结构相似性(MSSIM)和优值(FOM)进行定量评估。对于临床图像,由于没有无噪声图像,仅使用ENR进行评估。
-----ENR度量标准:由于传统的评估指标需要无噪声图像,作者提出了ENR作为一个新的定量评估指标,用于选择高质量的GAD去噪图像。ENR综合了图像中边缘区域与背景区域以及前景区域之间的对比度。
Ultrasound speckle reduction using wavelet-based generative adversarial network(2022)
提出了一种新的基于小波域的GAN(WGAN-DUS)来减少实际超声图像中的斑点噪声,同时保留高频细节;提出了一种新的综合损失函数,包含子带级别的纹理和结构信息;提出了渐进式调整策略和噪声水平估计算法,以进一步提高实际超声图像的去斑性能。
方法论:
-
小波变换:使用离散小波变换(DWT)将输入图像分解为四个子带图像(LL, LH, HL, HH),这些子带包含了不同的频率信息。
-
网络架构:提出了包含生成器和鉴别器的WGAN-DUS网络。生成器负责从噪声图像生成去噪图像,而鉴别器则用于区分生成的去噪图像和无噪声的真实图像。
-
小波重建模块(WRM):WRM结合了小波残差通道注意力块(WRCAB),用于重建目标小波子带,以增强网络对有用子带特征的识别能力。
-
噪声水平估计算法:由于实际超声图像中的斑点噪声水平未知,提出了一种算法来估计噪声水平,以便在去斑过程中进行适当的调整。
-
损失函数:定义了一个综合损失函数,包括小波子带损失、对抗性损失和结构相似性指数(SSIM)损失,以优化生成器的性能。
“Phantom” 在这里指的是用于超声成像的仿体模型,这些模型是专门设计的,用于模拟人体组织在超声图像中的表现。使用仿体模型可以控制实验条件,以便于研究者评估和比较不同的图像处理算法,如去斑算法,在控制变量下的效能。
因此,“phantom US image pair” 通常是指一对使用超声仿体模型获得的,包括无噪声和高噪声情况的超声图像,这对图像常用于训练和评估超声图像去斑算法的性能。
Ultrasound Despeckling With GANs and Cross Modality Transfer Learning(2024)
提出了一个基于深度学习的流程,使用跨模态迁移学习来去除B模式超声医学图像中的斑点。系统架构基于pix2pix生成对抗网络(GAN),能够通过图像到图像的转换方式,将真实的B模式超声图像去噪并生成类似MRI的合成版本。
方法论:
本文提出的算法基本流程,旨在通过深度学习去除超声图像中的斑点噪声,主要分为以下几个步骤:
- 超声图像模拟器(GAN S)的构建与训练:
使用预处理的MRI图像作为输入,生成具有超声图像特征(如斑点噪声)的合成超声图像。
预处理包括去压缩、量化到3位值,并进行中值滤波,以创建类似图标化的图像。 - 合成超声图像的生成:
利用训练好的GAN S,将MRI图像转换成合成的B模式超声图像,这些图像包含了模拟的斑点噪声。
去噪GAN(GAN D)的构建与训练: - 使用两组图像对训练GAN D:
一组由真实的MRI图像和对应的合成超声图像组成,这些超声图像是通过GAN S生成的。
另一组由自然图像及其被瑞利噪声污染的版本组成。 - 去噪模型的训练:
GAN D通过对抗性训练学习如何将含有斑点噪声的超声图像转换成干净、类似MRI的图像。
使用pix2pix GAN架构进行训练,该架构包括生成器和鉴别器网络。
其中,超声图像模拟器(GAN S)的构建与训练细节如下:
- 数据准备:
选择一组未经斑点噪声污染的MRI图像作为原始数据集。
对这些MRI图像进行预处理,以模拟超声图像的特征。 - 预处理步骤:
将MRI图像转换到射频(RF)域。
对RF域图像进行去压缩处理。
执行量化操作,将图像的强度深度降低到3位值,这通过乘以并除以特定因子实现,以保留较少的位信息。
应用中值滤波,通常使用3x3像素的平方核进行几次迭代,以进一步简化图像结构。 - 生成图标化图像:
经过预处理的图像转换为具有较少灰度级的图标化图像,这些图像具有简化的解剖结构表示,类似于超声图像中的斑点噪声模式。 - 训练GAN S:
使用上述生成的图标化图像作为输入,对应的原始超声图像作为目标输出,训练GAN S。
GAN S由两部分组成:生成器和鉴别器。生成器学习从简化的图标化图像创建逼真的超声图像,而鉴别器则学习区分生成的超声图像和真实的超声图像。 - 生成合成超声图像:
训练完成后,GAN S能够接收任何MRI图像的图标化版本,生成具有超声图像特征的合成图像,包括斑点噪声和较低分辨率。 - 数据对生成:
使用GAN S生成的合成超声图像与原始MRI图像配对,形成训练对,这些训练对将用于后续去噪GAN(GAN D)的训练。
Despeckling of clinical ultrasound images using deep residual learning(2020)
提出了一种新颖的基于深度残差学习网络(Residual Learning Network, RLN)的超声图像去斑方法。
方法论:
预训练残差学习网络(RLN)的应用:论文中提出了使用预训练的RLN进行超声图像去斑的方法。这种方法利用了预训练网络在去斑任务上的优势,而无需从头开始训练网络,从而节省了计算资源。
Deep neural network with deformable convolution and side window convolution for image denoising(2023)
设计了一种新颖的网络架构,该架构包含两种类型的不规则卷积层——可变形卷积层(Deformable Convolutional Layer)和侧窗卷积层(Side Window Convolutional Layer)。
方法论:
-
网络结构:提出的网络结构由多个不规则卷积块组成,每个块包含一个可变形卷积层、多个侧窗卷积层和一个1×1卷积层。这些块通过残差学习结构连接,增强了网络的连续记忆机制。
-
可变形卷积:这种卷积能够根据图像的几何结构自适应地调整采样点,从而获得更灵活的感受野,有助于改善图像去噪效果。
-
侧窗卷积:这种技术将处理像素放置在窗口的边缘,有助于更清晰地恢复图像边缘,解决传统方法中边缘模糊的问题。
-
为了生成训练所需的干净-噪声图像对,首先在干净的图像上添加高斯白噪声(AWGN)。这是由于实际的干净-噪声图像对不足,因此通常使用这种方法来模拟噪声。
Residual dense network with non-residual guidance for blind image denoising(2023)
提出了一种结合残差密集网络(Residual Dense Network, RDN)和非残差引导(Non-Residual Guidance)的深度学习框架,用于盲图像去噪。
方法论:
-
残差学习:残差学习是一种有效的图像去噪方法,它通过学习估计噪声而不是干净图像本身。然而,残差学习在捕获图像的层次特征方面存在不足,因为它缺乏层与层之间的连接。
-
残差密集网络(RDN):为了解决这个问题,提出了RDN,它在残差块中添加了密集连接,以促进层之间的交互并提取层次特征。尽管RDN在非盲去噪方面表现出色,但在盲去噪方面,它仅在噪声水平较高时才能超越现有的最先进方法。
-
非残差引导网络:为了提高RDN在所有噪声水平下的去噪性能,论文中提出了一个基于Wiener滤波器概念的非残差网络,该网络预测信号而不是噪声,以协助RDN实现满意的性能。
-
新架构:提出了一种新的网络架构,该架构结合了残差和非残差网络的输出,通过一个引导网络生成最终的去噪输出。实验结果表明,这种新架构在定量和图像质量方面都优于现有的盲去噪方法。
Ultrasound image de-speckling by a hybrid deep network with transferred filtering and structural prior(2020)
提出了一种基于混合深度网络的超声图像去斑(de-speckling)方法,该方法利用迁移学习(transfer learning)和两种类型的先验知识(高斯分布先验和结构先验)来改善超声图像的去斑效果。
方法论:
- 迁移学习:使用干净的自然图像数据集训练一个可迁移的去噪网络,以解决超声图像去斑中缺乏标记数据的问题。
- 高斯分布先验:基于对数变换域中斑点噪声的高斯分布近似,通过最大似然估计来估计分布参数。
- 结构先验:使用VGGNet提取超声图像去斑前后的结构边界,利用这些边界信息对迁移网络进行微调,以保持去斑后的图像结构不变。
RED-MAM—A residual encoder-decoder network based on multi-attention fusion for ultrasound image denoising(2023)
提出一种基于多注意力融合的残差编码器-解码器网络(RED-MAM),用于改善超声图像的去噪效果。
方法论:
-
模型构建:提出了一种基于残差编码器-解码器(RED)的网络结构,并引入了多注意力融合(MAM)模块来增强模型对图像特征的捕捉能力。RED-MAM网络的架构包括五个编码层、五个解码层以及两个多注意力融合注意力块。
-
多注意力机制:设计了一种多注意力融合机制,包括空间注意力和通道注意力,以自适应地强化图像中的关键信息并忽略不重要的信息。通过多注意力融合注意力块,实现了在解码过程中对编码特征的重用和自校准,以丰富特征表示并改善图像恢复的细节。
-
损失函数:使用了均方误差(MSE)作为损失函数,以最小化去噪图像与干净图像之间的像素级差异。
传统去噪
Improved non-local self-similarity measures for effective speckle noise reduction in ultrasound images(2020)
提出一种改进的非局部自相似性度量方法,用于有效减少超声图像中的斑点噪声,可以显著提高所提滤波器的去噪和边缘保持能力。
方法论:
- 低冗余
-----在本文中,“低冗余”(low redundancy)指的是图像中某些区域的像素模式或纹理在图像的其他部分出现的频率较低,即这些区域在图像中的独特性较高。换句话说,这些区域缺乏在非局部(远离目标像素)区域内找到相似像素块的能力。在超声图像去噪的背景下,低冗余区域可能包含重要的诊断信息,但同时也可能因为缺乏相似的参考像素块而难以通过传统的非局部去噪方法进行有效处理。
-----在非局部均值(NLM)类算法中,去噪性能很大程度上依赖于在图像中找到与目标像素块相似的像素块。如果一个区域的冗余度低,意味着在图像的非局部区域内难以找到足够多的相似像素块来进行有效的平均或加权,这可能导致去噪效果不佳,无法有效抑制噪声或可能导致图像细节的丢失。
-----因此,本文提出的算法通过计算每个像素块的冗余指数来识别低冗余区域,并针对这些区域采用特殊的处理策略,以改善去噪性能并保留图像的诊断价值。具体来说,算法在低冗余区域使用不同的像素块表示方法和相似性度量,以便更好地捕获和利用图像中的自相似性,从而提高去噪效果。
算法具体步骤:
- 初步估计无噪声图像:
使用改进的优化贝叶斯非局部均值(OBNLM)滤波器。
通过新的向量形式表示像素块,计算每个像素的初步去噪结果,得到一个预估计的无噪声图像。 - 计算冗余指数:
对于图像中的每个像素块,计算一个新的指标,称为冗余指数(Redundancy Index),用于确定图像中哪些区域的冗余度低。 - 重新计算滤波输出:
对于冗余指数低于特定阈值的像素块,使用另一种新的向量形式来表示这些像素块。
利用这些表示重新计算滤波输出,以便在这些低冗余区域获得更好的去噪效果。 - 生成最终结果:
将重新计算的滤波输出与初步估计的无噪声图像进行叠加,生成最终的去噪结果。
算法实现细节:
- 算法使用非局部搜索区域内的像素块的相似性来估计滤波权重。
- 引入了旋转不变性,通过在像素块表示中使用排序和平均值操作,使得算法对图像的旋转和翻转具有鲁棒性。
- 利用皮尔逊距离(Pearson distance)来替代传统的高斯加权欧几里得距离,以更准确地衡量像素块之间的相似性。
Non-Local Based Denoising Framework for In Vivo Contrast-Free Ultrasound Microvessel Imaging(2019)
文章介绍了一种基于非局部均值(Non-Local Mean, NLM)的去噪框架,结合了基于块的非局部均值滤波和顶帽形态学滤波(top-hat morphological filtering, THF)的方法,以改善血管轮廓和抑制背景噪声。
背景噪声的去除主要经过以下几个步骤:
- SVD滤波:
首先使用奇异值分解(SVD)对超声数据进行时空滤波,以分离出血液信号和杂波信号。
通过选择一个合适的杂波等级(rank),可以抑制杂波信号并重建出包含血液信号和背景噪声的多普勒强度图像。 - NLM滤波:
采用非局部均值(NLM)滤波算法,该算法利用图像中的自相似性特征来比较局部邻域。
将图像分割成有重叠支持的块,并在这些块上执行NLM滤波。
对于每个像素,如果它包含在多个块中,则从不同的NLM滤波方案中计算出多个估计值,并存储起来以形成像素的最终恢复强度。 - 形态学顶帽滤波(THF):
使用顶帽形态学滤波器进一步去除背景噪声,同时保留小血管结构。
THF通过从NLM恢复后的图像中减去其开运算结果来提取图像中的亮度区域,这些区域比用于开运算的结构元素要小。
A patch-based low-rank minimization approach for speckle noise reduction in ultrasound images(2021,低秩)
论文提出了一种基于块的低秩方法来减少超声图像中的斑点噪声。首先,通过块匹配方案构建超声图像的块组,然后使用加权核范数作为正则化项建立变分模型,并应用交替方向乘子法(ADMM)求解该非凸模型。
算法步骤:
- 关键块提取与块组构建:
将噪声图像分割成多个重叠的关键块(key patches)。
通过块匹配技术为每个关键块找到相似的块,并构建块组。 - 加权核范数变分模型建立:
对于每个块组,建立一个使用加权核范数作为正则化项的变分模型。 - ADMM方法应用:
应用交替方向乘子法(ADMM)来求解提出的非凸变分模型。 - 子问题求解:
ADMM迭代过程中,需要求解两个子问题:
第一个子问题涉及X的更新,可以通过牛顿方法求解。
第二个子问题涉及Z的更新,通常具有封闭形式的解。 - 块的低秩近似计算:
对所有块组进行低秩近似计算,得到近似块。 - 图像重建:
将所有近似块聚合并放回其原始位置,通过平均重叠块来估计每个像素的最终值,从而重建超声图像。 - 算法终止条件:
当达到最大外层迭代次数M,或者连续两次迭代之间的相对误差满足停止准则时,终止算法。 - 输出结果:
输出去噪后的超声图像。
Kernel PCA based non-local means method for speckle reduction in medical ultrasound images(2022)
提出了一种新的去斑点方案,通过将核主成分分析(Kernel PCA)引入NLM算法,在高维核PCA子空间中计算相似性,以提高在高噪声条件下的性能并准确保留边缘。
核心创新:
- 使用核PCA对图像块进行表示,以增强噪声条件下的相似性度量。
- 利用高阶统计量,提高边缘保持能力。
基本步骤:
-
参数选择:确定NLM算法中使用的搜索窗口大小、补丁大小以及高斯核宽度等参数。
-
图像块提取:从噪声图像中提取图像块,并以单行向量的形式堆叠,构建数据库矩阵。
-
核矩阵构建:使用径向基函数(RBF)核或其他核函数计算所有图像块对之间的距离,形成核矩阵。
-
核奇异值分解(Kernel SVD):对核矩阵进行SVD,得到奇异值和对应的左奇异向量和右奇异向量。
-
高维空间映射:利用核SVD得到的奇异向量将图像块映射到高维特征空间。
-
相似性度量:在高维特征空间中,使用改进的相似性度量方法计算图像块之间的相似性。
-
权重计算:根据相似性度量结果,计算用于NLM滤波的权重。
-
NLM滤波:利用计算得到的权重,对每个像素进行加权平均,以估计其去噪后的值。
-
迭代更新:重复NLM滤波过程,直到满足停止条件或达到预定的迭代次数。
-
结果合成:将滤波后的图像块重新组合,形成最终的去噪图像。
Multiplicative frequency and angular speckle reduction in ultrasound imaging(2023,乘法频率)
通过结合频率和角度复合技术来实现乘法级的斑点噪声降低。
重要发现:
过在不同频率和不同角度获取的图像平均化,可以显著降低斑点噪声。实验表明,与非复合图像相比,复合频率和角度平均化可以将斑点噪声降低约9倍,而单独使用频率或角度平均化分别可以实现约3倍的降低。
基本步骤:
- 图像数据采集:
使用超声换能器对样品进行成像,通过改变超声频率和旋转样品来获取不同角度的图像。 - 构建图像块:
将超声图像分割成多个重叠的图像块。 - 频率复合:
对每个角度的图像应用不同频率的Gaussian脉冲,并通过傅里叶滤波处理以生成不同频率的图像。 - 角度复合:
使用机器人臂或其他设备在多个角度获取图像,每个角度的图像将用于复合处理。 - 数字图像旋转:
将不同角度获取的图像通过数字旋转调整到同一坐标系统。 - 非刚性图像配准:
应用非刚性图像配准算法(如“demons”算法和随机梯度下降算法)来校正由于操作者、患者运动和声波折射引起的图像失真。 - 图像复合:
将配准后的图像进行复合,通过平均化多个图像块来生成最终的去斑点图像。
Speckle reduction in medical ultrasound images using an unbiased non-local means method(2016,非局部)
开发了一种新的无偏非局部均值(UNLM)滤波器,该滤波器利用伽马分布模型和最大似然估计来精确地从医学超声图像中去除斑点噪声,同时保持了图像的结构特征和质量。这种方法特别针对斑点噪声的统计特性进行了优化,提高了去噪效率并减少了偏差。
基本步骤:
-
参数估计:首先使用最大似然(ML)方法估计超声图像中斑点噪声的伽马分布的形状(α)和尺度(β)参数。这些参数是通过在整个图像的均匀区域自动计算得出的。
-
非局部均值滤波:对于图像中的每个像素,应用NLM算法来估计其去噪后的值。NLM算法通过比较搜索窗口内所有像素块与目标像素块的相似度,然后根据相似度的加权平均来更新像素值。
-
偏差校正:考虑到斑点噪声的偏差,使用估计出的伽马分布参数,特别是形状和尺度参数,来计算并从NLM滤波后的输出中去除偏差。
-
计算无偏值:对于每个像素,使用特定的公式来计算无偏的像素值,确保去噪后的图像既减少了斑点噪声,又保留了重要的结构信息。
噪声图像的获取主要通过以下步骤实现:
-
原始数据采集:首先,收集未受斑点噪声影响的原始超声图像数据。
-
斑点噪声模拟:根据超声图像的特性,模拟斑点噪声并添加到原始图像上。斑点噪声通常被认为是一种乘性噪声,其统计特性可以用特定的分布模型来描述,如本文中使用的伽马分布。
-
伽马分布应用:利用伽马分布来模拟斑点噪声,因为伽马分布在数学上能够很好地近似表示未压缩超声数据中完全发展的斑点的统计特性。
-
参数估计:使用最大似然估计(MLE)方法来估计伽马分布的形状(α)和尺度(β)参数。这些参数将决定模拟噪声的特性。
-
噪声添加:根据估计的参数,生成符合伽马分布的噪声图像,并将其与原始图像相乘,从而在原始超声图像上形成斑点噪声。
Ultrasound image despeckling using low rank matrix approximation approach(低秩近似)
介绍了低秩矩阵近似的基本理论,包括低秩矩阵分解(LRMF)方法和核范数最小化(NNM)方法。提出了两种去斑方法:DLRA(去斑使用低秩近似)和改进的DLRA方法,后者在DLRA的基础上增加了预处理阶段,利用超声视频数据的统计特性来提高去斑能力。
本文提出的两种去斑算法的基本步骤如下:
Despeckling using low-rank approximation (DLRA) 算法步骤:
-
对数变换:对带噪超声图像 ( N ) 应用对数变换,将乘性噪声转换为加性噪声。
[ Y = \log(N) ] -
低秩去噪:
- 使用加权核范数最小化(WNNM)方法对 ( Y ) 进行去噪。
- 通过块匹配方法找到相似的非局部自相似(NSS)块,并进行分组。
- 对每个分组应用WNNM,通过奇异值分解(SVD)和软阈值操作来估计去噪后的图像块。
-
指数变换:对去噪后的图像进行指数变换,以获得去斑后的超声图像。
[ Z = \exp(\hat{X}) ]
Modified DLRA 方法步骤:
-
提取超声视频帧:从超声视频中提取连续的帧 ( N = [N_1, N_2, …, N_q] )。
-
估计时间协方差:计算超声视频帧之间的时间协方差。
-
中心化和Cholesky分解:对协方差矩阵进行Cholesky分解,以获得装饰相关的帧。
-
重构装饰相关的帧:使用装饰相关的斑点系数重构超声图像帧。
-
DLRA去斑:将重构的图像帧的平均值作为DLRA算法的输入,以进一步去除斑点噪声。
-
输出去斑图像:应用DLRA算法于平均图像 ( W ) 来获得最终的去斑图像 ( Z )。
这些步骤构成了所提出的去斑算法的核心,旨在有效去除超声图像中的斑点噪声,同时保留图像的细节和结构特征。