图像处理
文章平均质量分 69
xys430381_1
这个作者很懒,什么都没留下…
展开
-
去噪与增强(denoise/enhancement)
Awesome-Denoise原创 2024-06-02 16:19:03 · 389 阅读 · 0 评论 -
图像配准(匹配)与变化检测
然而,像素级或物体级的变化检测方法不适用于土地利用变化分析。造成这种情况的主要原因可能是,场景中的物体,如植被生长和个别建筑的拆除/建造,不会直接影响土地使用类别,即它们在场景中的变化不会改变土地利用类别,例如,从住宅区到工业区。因此,在场景尺度上改进变化检测方法至关重要。SLCD最简单的方法,即后分类方法,将场景变化检测任务视为一个独立的分类,忽略时间相关性信息,从而遭受误差累积。换句话说,它几乎没有考虑多时间图像的时间相关性。原创 2023-04-23 15:27:11 · 3584 阅读 · 1 评论 -
图像重构---从RGB重构高光谱
2021-ICCV-Semantic-embedded Unsupervised Spectral Reconstruction from Single RGB Images in the Wild— 源码2020-CVPR-Hierarchical Regression Network for Spectral Reconstruction from RGB Images— 源码2020-CVPR-Adaptive Weighted Attention Network with Camera Sp原创 2022-03-02 15:55:33 · 6783 阅读 · 0 评论 -
involution理解
最好的参考来自论文作者的知乎:CVPR 2021 | involution:超越convolution和self-attention的神经网络新算子其他餐卡:https://zhuanlan.zhihu.com/p/400402288https://zhuanlan.zhihu.com/p/356960359https://blog.csdn.net/P_LarT/article/details/115426891引言CNN的空间不变性 (spatial-agnostic)和通道特异性 (cha原创 2021-12-22 15:47:45 · 2545 阅读 · 1 评论 -
航空图像/ UAV
UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial VehiclesAVHuman 数据集,对无人机图像的人类行为进行理解解析,包含 67,428 个多模式视频序列和 119 个用于动作识别的目标,22,476 帧用于姿势估计,41,290 帧和 1,144个用于人员重识别的身份,以及 22,263 帧用于属性识别。它由一架飞行的无人机在三个月内的白天和夜晚在多个城市和农村地区收集的,因此涵原创 2021-09-16 16:41:27 · 588 阅读 · 0 评论 -
超声舌图像
语音知识 Pronunciation(发音分类)超声语言治疗数据集:https://ultrasuite.github.io/原创 2021-07-23 18:05:12 · 236 阅读 · 0 评论 -
表盘识别(数字与指针)
指针型静态图像分割——水表指针提取(一)—(matlab代码)使用OpenCV进行仪表数值读取—(python 模板匹配+k-means二值分割+直线拟合)OpenCV 指针仪表盘参数读取(一) 方案设计OpenCV 指针仪表盘参数读取(二) 预处理OpenCV 指针仪表盘参数读取(三) 圆检测OpenCV 指针仪表盘参数读取(四) 指针定位OpenCV 指针仪表盘参数读取(五) 参数计算附:Opencv基础自学二十(圆检测)数字表数字万用表(七段数码管)的图像识别(opencv实现)—原创 2020-08-01 17:59:00 · 8528 阅读 · 0 评论 -
opencv---边沿检测、轮廓、轮廓特征、轮廓层级
边缘检测,框出物体的轮廓(使用opencv-python)OpenCV 中的轮廓应用感兴趣区域的移动物体检测,框出移动物体的轮廓 (固定摄像头, opencv-python)OpenCV图像处理-轮廓和轮廓特征相关概念:数学形态学操作OpenCV图像处理|1.11 形态学操作图像卷积、边缘提取和滤波去噪图像边缘检测 - 图像梯度与Canny算子OpenCV—python 图像显著性检测算法—HC/RC/LC/FT轮廓处理的一般流程:知识点1:需要注意的是cv2.findConto原创 2020-06-22 22:21:17 · 2771 阅读 · 0 评论 -
FGVC---Bilinear Pooling (双线性池化)及其发展
这里写目录标题基本的Bilinear CNN降低维度Compact Bilinear Pooling-CVPR2016Low-rank Bilinear Pooling for Fine-Grained Classification-CVPR2017跨层双线性池化Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition-EC...原创 2020-04-23 19:36:26 · 5722 阅读 · 1 评论 -
Python的图像库(Opencv、PIL、matplotlib、skimage)的使用(读取、存储、变换、滤波),及其差异
Python的图像库(Opencv、PIL、matplotlib、skimage)的使用(读取、存储、变换、滤波)【AI基础】OpenCV,PIL,Skimage你pick谁PIL.Image和OpenCV图像格式相互转换OpenCV,PIL,Skimage差异:1读取方式上的不同我们首先从读取图片开始,PIL用open方法来读取图片,但opencv、skimage都以imread()...原创 2020-02-08 16:12:59 · 1207 阅读 · 0 评论 -
图像相似度/距离
计算两幅图像的相似度总结python OpenCV 图片相似度 5种算法两幅相同大小图像的相似程度的两个评价指标-PSNR和SSIM原创 2020-01-15 19:38:08 · 365 阅读 · 0 评论 -
遥感图像论文阅读笔记
Land-cover classification with high-resolution remote sensing images using transferable deep models(1)伪标签产生方法a deep Convolutional Neural Networks (CNNs) is first pre-trained with a well-annotated la...原创 2020-01-02 22:24:44 · 865 阅读 · 0 评论 -
Mask-Rcnn
Mask R-CNN前世今生Mask RCNN 简单使用原创 2019-12-28 23:47:12 · 130 阅读 · 0 评论 -
显著性检测-综述
Salient Object Detection: A Survey【显著性目标检测】CVPR2018 显著性检测领域论文整理解读(Salient Object Detection)2019-显著性检测之BASNet: Boundary Aware Salient Object Detection深度无监督显著性检测:多个Weak Label的伪监督...原创 2019-12-25 22:42:28 · 1059 阅读 · 0 评论 -
多尺度目标检测
目标检测研究方向之多尺度目标检测聊聊目标检测中的多尺度检测(Multi-Scale),从YOLO,ssd到FPN,SNIPER,SSD填坑贴和极大极小目标识别YOLOv3——引入:FPN+多尺度检测 (目标检测)(one-stage)(深度学习)(CVPR 2018)STDN——新奇的特征图尺度变换法 (目标检测)(one-stage)(深度学习)(CVPR 2018)SNIPER(Eff...原创 2019-12-19 16:59:52 · 485 阅读 · 0 评论 -
图像融合-综述
图像融合论文及代码网址整理总结(1)——多聚焦图像融合(大部分成像系统,例如数码单反相机,有一个有限的景深,使场景内容在有限的距离成像平面保持焦点。具体来说,离焦点更近或更远的物体在图像中表现为模糊(失焦)对焦有的会导致全图失焦。多聚焦图像融合(MFIF)旨在从同一场景的两个或多个部分聚焦的图像中重建一个完全聚焦的图像。平时我们拍照一般都是局部聚焦,也就是我们拍照时点击某一处,该处会聚焦,那...原创 2019-12-19 15:37:54 · 5571 阅读 · 2 评论 -
密集人群检测、计数、姿态估计、关键点检测
进展 | 密集人群分布检测与计数密集人群检测上海交大卢策吾团队实时多人姿态估计系统升级,挑战拥挤人群场景真实场景下拥挤人群中人类姿态估计CVPR 2019 | 国防科大提出双目超分辨算法,效果优异代码已开源...原创 2019-12-16 18:13:00 · 1570 阅读 · 0 评论 -
图像预处理
可微分的「OpenCV」:这是基于PyTorch的可微计算机视觉库原创 2019-12-16 15:36:38 · 425 阅读 · 0 评论 -
红外图像
参考文献:行业国内从事红外热成像的公司近红外相机高分辨成像将迎来行业爆发(一)近红外相机高分辨成像将迎来行业爆发(二)技术基于红外热成像的行人检测方法 方法来自于《Thermal-Infrared Pedestrian ROI Extraction through Thermal andMotion Information Fusion》(xys—基于二值分割)基于卷积神经网络的...原创 2020-01-02 11:15:05 · 3460 阅读 · 4 评论 -
resnet的tensorflow实现
TensorFlow 使用预训练模型 ResNet-50Tensorflow实战:ResNet原理及实现(多注释)用slim实现的基本网络结构及其预训练模型https://github.com/tensorflow/models/tree/master/research/slim其中的踩坑记录...原创 2019-10-20 14:53:23 · 418 阅读 · 0 评论 -
图像标注工具汇总
深度学习图像标注工具汇总原创 2019-05-16 17:29:43 · 4206 阅读 · 1 评论 -
CNN可视化/可解释性
凭什么相信你,我的CNN模型?(篇一:CAM和Grad-CAM)凭什么相信你,我的CNN模型?(篇二:万金油LIME)在当前深度学习的领域,有一个非常不好的风气:一切以经验论,好用就行,不问为什么,很少深究问题背后的深层次原因。从长远来看,这样做就埋下了隐患。举个例子,在1980年左右的时候,美国五角大楼启动了一个项目:用神经网络模型来识别坦克(当时还没有深度学习的概念),他们采集了100张隐...转载 2019-05-21 19:10:56 · 13756 阅读 · 4 评论 -
目标检测---综述
目标检测:2014~2019方法汇总各网络的源码:https://github.com/hoya012/deep_learning_object_detection二维目标检测的优化方向二维目标检测实现和优化方向包括backbone、IoU、损失函数、NMS、anchor、one shot learning/zero shot learning等。基于目标检测的backbone和特...原创 2019-05-15 10:56:05 · 507 阅读 · 0 评论 -
faster RCNN之RPN详解
RPN 整体流程在faster RCNN 原文中,RPN网络示意图如下(其中的K为特征图中每个点上的anchor数目,一般取k=9): 首先我们用真实数据代入,把RPN整个流程走一遍:前提:通过一系列卷积得到公共特征图,假设他的大小是N x 16 x 16,然后我们进入RPN阶段RPN阶段:首先经过一个3 x 3的卷积,得到一个256 x 16 x 16的特征图,也可以看作16 x ...原创 2018-11-01 20:45:08 · 4924 阅读 · 2 评论 -
目标检测中的常用评价指标总结
IOU是由预测的包围盒与地面真相包围盒之间的重叠区域(交集),除以它们之间的联合区域(并集),其中P代表预测框,gt代表真值框:原创 2019-06-04 16:02:36 · 1279 阅读 · 0 评论 -
神经网络实现---SSD
关于SSD的实现,参考了https://github.com/balancap/SDC-Vehicle-Detection,其中阐述了实现的细节。the SSD network used the concept of anchor boxes for object detection. The image below illustrates the concept: at several sca...转载 2019-06-26 08:39:18 · 3398 阅读 · 0 评论 -
自注意力与 non local Neural Networks
参考文献:https://blog.csdn.net/u010158659/article/details/78635219用Attention玩转CV,一文总览自注意力语义分割进展Non-local Neural Networks及自注意力机制思考https://blog.csdn.net/i1020/article/details/85370667https://blog.csdn....原创 2019-09-27 22:27:18 · 881 阅读 · 1 评论 -
GAP代替FC层
首先我们来看一下全连接层的缺点:在AlexNet及其之前的大抵上所有的基于神经网络的机器学习算法都要在卷积层之后添加上全连接层来进行特征的向量化,此外出于神经网络黑盒子的考虑,有时设计几个全连接网络还可以提升卷积神经网络的分类性能,一度成为神经网络使用的标配。但是,我们同时也注意到,全连接层有一个非常致命的弱点就是参数量过大,特别是与最后一个卷积层相连的全连接层。一方面增加了Training以...原创 2019-05-20 11:37:17 · 3987 阅读 · 1 评论 -
好远好远的图像处理---综述
航空遥感图像(Aerial Images)目标检测数据集汇总常规目标检测数据集有很多,现在前沿的目标检测算法(如Faster R-CNN, Yolo, SSD, Mask R-CNN等)基本都是在这些常规数据集上实验的,但是,基于常规数据集训练的分类器,在航空遥感图像上的检测效果并不好,主要原因是航空遥感图像有其特殊性:1,尺度多样性,航空遥感图像从几百米到近万米的拍摄高度都有,且地面目标即使......原创 2020-08-31 10:54:12 · 3531 阅读 · 2 评论 -
U-net学习
典型例子 视网膜血管分割https://github.com/orobix/retina-unetUnet项目解析(1): run_training.pyhttps://blog.csdn.net/shenziheng1/article/details/80686291Unet项目解析(2):./src/retinaNN_training.pyhttps://blog.csdn.net/...原创 2019-01-21 11:22:08 · 270 阅读 · 0 评论 -
图像裁剪与合并
图片的裁剪和合并(python+opencv)https://blog.csdn.net/weixin_38517705/article/details/82703252Python自定义批量合并拼接图像、批量裁剪图像(python+pillow)https://blog.csdn.net/Tong_T/article/details/83057401...转载 2019-01-24 23:56:15 · 1593 阅读 · 0 评论 -
基于深度学习的病理全切片分类与识别
论文笔记 | 基于深度学习的乳腺转移瘤识别(Deep Learning for Identifying Metastatic Breast Cancer)https://blog.csdn.net/u014593748/article/details/78200173Dermatologist-levelclassification of skin cancer with deepneural...原创 2019-01-06 16:49:54 · 5776 阅读 · 0 评论 -
Dice-loss
使用深度学习做医学图像分割时,经常会用dice系数作为损失函数。loss function之用Dice-coefficient loss function or cross-entropyhttps://blog.csdn.net/u014264373/article/details/82950922dice系数作为损失函数的网络模型如何加载(ValueError: Unknown loss...原创 2019-01-05 23:07:32 · 11610 阅读 · 0 评论 -
深度学习---池化技术总结
池化方法总结(Pooling)https://blog.csdn.net/danieljianfeng/article/details/42433475内容包括:一般池化(General Pooling)重叠池化(OverlappingPooling)空金字塔池化(Spatial Pyramid Pooling)对全局平均池化(GAP)过程的理解https://blog.csdn.n...原创 2018-12-20 09:34:16 · 605 阅读 · 0 评论 -
反卷积、上采样、上池化、子像素卷积的联系与区别
FCN于反卷积(Deconvolution)、上采样(UpSampling)https://blog.csdn.net/nijiayan123/article/details/79416764反卷积(Deconvolution)、上采样(UNSampling)与上池化(UnPooling)https://blog.csdn.net/A_a_ron/article/details/791811...原创 2018-11-01 22:53:29 · 6004 阅读 · 0 评论 -
faster RCNN
Faster R-CNN论文翻译——中英文对照https://www.jianshu.com/p/26ca6f6bd1a1?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendationFaster-rcnn详解https://blog.csdn.net/WZ...原创 2018-11-01 20:57:34 · 303 阅读 · 0 评论 -
非极大值抑制(Non-Maximum Suppression,NMS)
本文大量参考了博文https://www.cnblogs.com/makefile/p/nms.html 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。 这里不讨论通用的NMS算法(参考论文《Efficient Non-Maxim...转载 2018-09-19 15:13:43 · 2191 阅读 · 1 评论 -
如何fine tuning
为什么要fine-tuning?###我们有自己的图像识别任务,然而我们的数据集太小,直接进行训练很容易出现过拟合现象所以比较好的解决方案是先在一个大数据集中训练以提取比较准确的浅层特征,然后再针对这个训练过的网络利用我们的数据集进行训练,那么效果就会好很多。这个过程就是fine-tuning。model zoo###大家都注意到了这个情况,所以(1)FeifeiLi带头创建imagen...原创 2018-09-18 21:15:47 · 1511 阅读 · 0 评论 -
目标检测之RCNN、Fast RCNN 、Faster RCNN系列
先上三者的处理步骤:RCNN: 1、提取1000-2000个(超参数)的候选框(采用selective search算法); 2、将每个候选框中的图像调整到相同的size; 3、将调整size后的图像(数量与候选框个数相同)输入CNN提取feature; 4、用SVM对每个候选框feature进行分类,判断是否属于某个特定的类(多个二分类器); 5、对于属于某一分类打候选框,用回归器进...原创 2018-09-18 16:15:49 · 1009 阅读 · 1 评论 -
图像处理文章收集
记录看到的两篇好文。卷积神经网络CNN总结:https://www.cnblogs.com/skyfsm/p/6790245.html基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN:https://www.cnblogs.com/skyfsm/p/6806246.html深度 | 像玩乐高一样拆解Faster R-CNN:详解目标检测的实现过程...原创 2018-09-17 22:33:31 · 238 阅读 · 0 评论