tensorflow ---如何只更新部分参数

本文介绍TensorFlow中如何通过optimizer.minimize方法实现模型训练时仅更新指定参数的技术细节。包括使用tf.constant规避常量训练、利用var_list参数指定需更新变量、结合TRAINABLE_VARIABLE属性与tf.get_collection方法以及通过变量命名空间等方式实现对训练参数的有效控制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorflow中optimizer minimize自动训练简介和选择训练variable的方法
https://blog.csdn.net/huqinweI987/article/details/82771521

如何只更新指定参数?

用常量

使用tf.constant或者python变量的形式来规避常量被训练,这也是迁移学习要用到的技巧。
在这里插入图片描述

在优化时,默认是计算更新图中所有tf.Variable,也可直接指定var_list

optimizer.minimize(loss,var_list=)时传入指定var_list

在这里插入图片描述

变量TRAINABLE_VARIABLE=False 配合 tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)

1、定义变量TRAINABLE_VARIABLE=False
2、var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
在这里插入图片描述

变量命名空间 + var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=‘selected_variable_to_trian’)

在这里插入图片描述

tensorflow 多Agent 灵活保存、更新Graph的各部分参数(tf.variable_scope(), tf.get_collection(), tf.train.Saver())

https://blog.csdn.net/qq_27465499/article/details/86768909
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

使用tf.train.Saver()对相应部分参数进行保存和读取:
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值