From Facial Parts Responses to Face Detection: A Deep Learning Approach

本文介绍了汤晓鸥团队采用深度学习方法进行人脸检测的研究,他们在FDDB上取得了领先的成绩。研究中,作者提出了Faceness net的概念,通过训练面部五个部位的模型,结合先验知识计算人脸得分。实验包括对partness model的训练和faceness score的计算,展示了增加监督信息如何提高模型的定位能力。最后,他们使用AlexNet在AFLW数据集上训练人脸检测模型。
摘要由CSDN通过智能技术生成

这篇是汤晓欧组最新的一篇人脸检测的论文,在FDDB上论文组中,目前取得第一的好成绩。故拿此文拜读一番,写篇读后感:
首先,作者提出一个Faceness net的概念,这个概念实际上很简单,就是训练人脸五个部位的模型,然后针对这五个部位的模型提出来的特征,通过人脸共有先验,设计出一个计算是否是人脸的得分,其中,模型的超参数 λ 用最大后验概率计算。
下面我主要讲一下5个模型的训练以及faceness score的求法,如果理解有不对的地方,望大家指正。

partness model的训练

这里实际上和其它深度学习文章相比,这里的训练并不算太难,里面的公式也都是比较基础的Softmax分类公式,所以这里的复现是比较容易的,不过这里在训练之前,讲了个值得大家注意或学习的地方:Classification 任务对Localization 和 detection任务都有辅助功能。之前,我参加图像检索比赛的时候就发现了在conv5层上,模型总是可以把你要分类的那个区域给凸显出来,也就是说conv5的特征图上,我们可以得到单物体分类的大致位置。之前一直不知道这个有什么用,看了这篇文章,这个CelebA数据集之后,我也想到了我的人脸检测算法要怎么搞,这个以后再说啦~
这里写图片描述
从上图可以很明显的看出:当你的监督信息更多时,实际上是更多条件对区域进行筛选,当我们只有人脸非人脸信息时,可能其他区域也有符合这个信息的pattern,举个并不恰当的例子

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值