【香蕉OI】Fibonacci's Nightmare(概率期望)

题意

(仅描述该题的80分部分分)

一个数列 { a n } \{a_n\} {an}由如下方式生成:

  1. a 0 = 1 a_0= 1 a0=1
  2. 对于每一个 a i ( i ≥ 1 ) a_i(i \ge 1) ai(i1),再 [ 0 , i − 1 ] [0,i-1] [0,i1]中等概率且独立随机选两个整数 j , k j,k j,k a i = a j + a k a_i=a_j+a_k ai=aj+ak

给出n,求 E ( a n 2 ) E(a_n^2) E(an2),即 a n a_n an的平方的期望。

思路

大力推式子:

E ( a i 2 ) = ∑ j = 0 i − 1 ∑ k = 0 i − 1 E [ ( a j + a k ) 2 ] n 2 = ∑ j = 0 i − 1 ∑ k = 0 i − 1 E [ a j 2 + a k 2 + 2 ∗ a j a k ] n 2 E(a_i^2)=\frac{\sum_{j=0}^{i-1}\sum_{k=0}^{i-1}E[(a_j+a_k)^2]}{n^2}=\frac{\sum_{j=0}^{i-1}\sum_{k=0}^{i-1}E[a_j^2+a_k^2+2*a_ja_k]}{n^2} E(ai2)=n2j=0i1k=0i1E[(aj+ak)2]=n2j=0i1k=0i1E[aj2+ak2+2ajak]

因为 a j a_j aj a k a_k ak是互相独立的,所以 E [ a j 2 + a k 2 + 2 ∗ a j a k ] E[a_j^2+a_k^2+2*a_ja_k] E[aj2+ak2+2ajak]可以拆开:

E ( a i 2 ) = ∑ j = 0 i − 1 ∑ k = 0 i − 1 [ E ( a j 2 ) + E ( a k 2 ) + 2 ∗ E ( a j a k ) ] n 2 E(a_i^2)=\frac{\sum_{j=0}^{i-1}\sum_{k=0}^{i-1}[E(a_j^2)+E(a_k^2)+2*E(a_ja_k)]}{n^2} E(ai2)=n2j=0i1k=0i1[E(aj2)+E(ak2)+2E(ajak)]

= 2 ∗ ∑ j = 0 i − 1 E ( a j 2 ) n + 2 ∗ E ( ∑ j = 0 i − 1 ∑ k = 0 i − 1 a j a k ) n 2 =\frac{2*\sum_{j=0}^{i-1}E(a_j^2)}{n}+\frac{2*E(\sum_{j=0}^{i-1}\sum_{k=0}^{i-1}a_ja_k)}{n^2} =n2j=0i1E(aj2)+n22E(j=0i1k=0i1ajak)

第一项是一个前缀和。现在来推第二项,尝试递推(为了方便j,k的范围变成了[0,i]):

E ( ∑ j = 0 i ∑ k = 0 i a j a k ) = E [ ( ∑ j = 0 i a j ) 2 ] E(\sum_{j=0}^{i}\sum_{k=0}^{i}a_ja_k)=E[(\sum_{j=0}^{i}a_j)^2] E(j=0ik=0iajak)=E[(j=0iaj)2]

= E [ ( ∑ j = 0 i − 1 a j + a i ) 2 ] =E[(\sum_{j=0}^{i-1}a_j+a_i)^2] =E[(j=0i1aj+ai)2]

= E [ ( ∑ j = 0 i − 1 a j ) 2 + 2 ∗ a i ∗ ∑ j = 0 i − 1 a j + a i 2 ] =E[(\sum_{j=0}^{i-1}a_j)^2+2*a_i*\sum_{j=0}^{i-1}a_j+a_i^2] =E[(j=0i1aj)2+2aij=0i1aj+ai2]

= E [ ( ∑ j = 0 i − 1 a j ) 2 ] + 2 ∗ E ( a i ∗ ∑ j = 0 i − 1 a j ) + E ( a i 2 ) =E[(\sum_{j=0}^{i-1}a_j)^2]+2*E(a_i*\sum_{j=0}^{i-1}a_j)+E(a_i^2) =E[(j=0i1aj)2]+2E(aij=0i1aj)+E(ai2)

又因为

E ( a i ) = 2 ∗ ∑ j = 0 i − 1 a j n E(a_i)=\frac{2*\sum_{j=0}^{i-1}a_j}{n} E(ai)=n2j=0i1aj

代入得:

E ( ∑ j = 0 i ∑ k = 0 i a j a k ) = E [ ( ∑ j = 0 i − 1 a j ) 2 ] + E ( a i 2 ) + 2 ∗ E [ ( ∑ j = 0 i − 1 a j ) 2 ∗ 2 n ] E(\sum_{j=0}^{i}\sum_{k=0}^{i}a_ja_k)=E[(\sum_{j=0}^{i-1}a_j)^2]+E(a_i^2)+2*E[(\sum_{j=0}^{i-1}a_j)^2*\frac{2}{n}] E(j=0ik=0iajak)=E[(j=0i1aj)2]+E(ai2)+2E[(j=0i1aj)2n2]

= E [ ( ∑ j = 0 i − 1 a j ) 2 ] + E ( a i 2 ) + 4 ∗ E [ ( ∑ j = 0 i − 1 a j ) 2 ] n =E[(\sum_{j=0}^{i-1}a_j)^2]+E(a_i^2)+\frac{4*E[(\sum_{j=0}^{i-1}a_j)^2]}{n} =E[(j=0i1aj)2]+E(ai2)+n4E[(j=0i1aj)2]

= ( 1 + 4 n ) E [ ( ∑ j = 0 i − 1 a j ) 2 ] + E ( a i 2 ) =(1+\frac{4}{n})E[(\sum_{j=0}^{i-1}a_j)^2]+E(a_i^2) =(1+n4)E[(j=0i1aj)2]+E(ai2)

可以递推。

于是此题做完了。O(n)。

期望好题。我对期望一无所知。

注意

1.

关注期望的定义 E ( x ) = ∑ p i ∗ x i E(x)=\sum p_i*x_i E(x)=pixi

把期望展开再推。

2.

期望的平方 ≠ \not= =平方的期望。

展开就明白了。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10, mod = 998244353;
int n, k;
LL a2[N], s1[N], s2[N], inv[N];

inline LL fpow(LL x, LL y, LL p){
	LL r = 1;
	while (y){
		if (y&1) r = r*x%p;
		x = x*x%p;
		y >>= 1;
	}
	return r;
}

int main()
{
	cin >> n >> k;
	for (int i = 1; i <= n; ++ i)
		inv[i] = fpow(i, mod-2, mod);
	a2[0] = s1[0] = s2[0] = 1;
	for (int i = 1; i <= n; ++ i){
		a2[i] = (2 * s2[i-1] * inv[i] % mod + 2 * s1[i-1] * inv[i] % mod * inv[i] % mod) % mod;
		s1[i] = ((1 + 4 * inv[i] % mod) * s1[i-1] % mod + a2[i]) % mod;
		s2[i] = (s2[i-1] + a2[i]) % mod;
	}
	printf("%lld\n", a2[n]);
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值