二项式反演的另一种证明方式

收集一个巧妙证法
f ( i ) = ∑ j = i n ( j i ) g ( j ) f(i)=\sum_{j=i}^n\binom{j}{i}g(j) f(i)=j=in(ij)g(j)
g ( i ) = ∑ j = i n ( − 1 ) j − i ( j i ) f ( i ) g(i)=\sum_{j=i}^n(-1)^{j-i}\binom{j}{i}f(i) g(i)=j=in(1)ji(ij)f(i)
考虑 f , g f,g f,g 的生成函数
G ( x ) = ∑ i = 0 n g ( i ) x i G(x)=\sum_{i=0}^ng(i)x^i G(x)=i=0ng(i)xi
G ( x + 1 ) = ∑ i = 0 n g ( i ) ∑ j = 0 i x j ( i j ) = ∑ j = 0 n x j ∑ i = j n ( i j ) g ( i ) = F ( x ) G(x+1)=\sum_{i=0}^ng(i)\sum_{j=0}^ix^j\binom{i}{j}=\sum_{j=0}^nx^j\sum_{i=j}^n\binom{i}{j}g(i)=F(x) G(x+1)=i=0ng(i)j=0ixj(ji)=j=0nxji=jn(ji)g(i)=F(x)
所以 G ( x ) = F ( x − 1 ) = ∑ i = 0 n f ( i ) ∑ j = 0 i ( − 1 ) j − i ( i j ) x j = ∑ i = 0 n x i ∑ j = i n ( j i ) ( − 1 ) j − i f ( j ) G(x)=F(x-1)=\sum_{i=0}^nf(i)\sum_{j=0}^i(-1)^{j-i}\binom{i}{j}x^j=\sum_{i=0}^nx^i\sum_{j=i}^n\binom{j}{i}(-1)^{j-i}f(j) G(x)=F(x1)=i=0nf(i)j=0i(1)ji(ji)xj=i=0nxij=in(ij)(1)jif(j)

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值