[BZOJ2423][HAOI2010]最长公共子序列(DP)

题意:给定两个字符串 s1 s2 ,求这两个字符串的最长公共子序列长度和最长公共子序列的个数。
f[i][j] 为字符串 s1 到了第 i 个字符,s2到了第 j 个字符的最长公共子序列长度g[i][j]为字符串 s1 到了第 i 个字符,s2到了第 j 个字符的最长公共子序列个数
第一问就是裸的最长公共子序列问题,注意滚动数组即可。
第二问,转移方程为:
1、当s1[i]==s2[j]时, g[i][j]+=g[i1][j1]
2、当 f[i1][j]==f[i][j] 时, g[i][j]+=g[i1][j]
3、当 f[i][j1]==f[i][j] 时, g[i][j]+=g[i][j1]
4、当 f[i1][j1]==f[i][j] 时, g[i][j]=g[i1][j1]
注意使用滚动数组,避免空间超限。
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 5005, PYZ = 1e8;
int m, n, f[2][N], g[2][N]; char s1[N], s2[N];
int main() {
    scanf("%s", s1 + 1); scanf("%s", s2 + 1);
    m = strlen(s1 + 1) - 1, n = strlen(s2 + 1) - 1; int i, j;
    for (j = 0; j <= n; j++) g[0][j] = 1;
    for (i = 1; i <= m; i++) {
        int op = i & 1; g[op][0] = 1; for (j = 1; j <= n; j++) {
            if (s1[i] == s2[j]) f[op][j] = f[op ^ 1][j - 1] + 1,
                g[op][j] = g[op ^ 1][j - 1];
            else f[op][j] = max(f[op ^ 1][j], f[op][j - 1]), g[op][j] = 0;
            if (f[op ^ 1][j] == f[op][j]) (g[op][j] += g[op ^ 1][j]) %= PYZ;
            if (f[op][j - 1] == f[op][j]) (g[op][j] += g[op][j - 1]) %= PYZ;
            if (f[op ^ 1][j - 1] == f[op][j])
                (g[op][j] -= g[op ^ 1][j - 1]) %= PYZ;
            if (g[op][j] < 0) g[op][j] += PYZ;
        }
    }
    printf("%d\n%d\n", f[m & 1][n], g[m & 1][n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值