[BZOJ1041][HAOI2008]圆上的整点(数论)

为了考虑方便,把问题视为以下模型:
对于任意的 1x<r ,求出满足 r2x2 是完全平方数的 x 的个数,并把结果加1(坐标轴上的整点)再乘 4 4个象限)。
x 的个数仍然是暴力统计,但是此题可以利用r2x2是完全平方数的必要条件,缩小枚举范围。
怎样求出这个必要条件呢?首先,把 r2x2 化为 (r+x)(rx)
思考 ab 为完全平方数的条件。可以看出,如果 ab 是完全平方数,那么 agcd(a,b)bgcd(a,b) 一定也是完全平方数,反过来也一样(因为 gcd(a,b)2 是完全平方数)。此时设 u=agcd(a,b),v=bgcd(a,b) ,那么 u v一定互质。容易推出 ab 为完全平方数当且仅当 u,v 都是完全平方数。
再看 gcd(r+x,rx) 的取值。容易得出, gcd(r+x,rx)=gcd(rx,2x) 。设 d=gcd(rx,2x)
d|x 时,则有 gcd(rx,2x)=gcd(rx,x)=gcd(r,x) ,此时 d 可以取r的任意约数。
否则有 gcd(rx,2x)=2gcd(rx,x)=2gcd(r,x) ,此时 d 可以取r的任意约数的两倍。
从上面推出, d=gcd(r+x,rx) 的取值范围为 r 的每一个约数和每一个约数的两倍(注意去重)。
考虑枚举d,则可以用「 rxd 的值为完全平方数」作为必要条件进行计算。由于 rxd 只能是完全平方数,所以对于每一个 d ,只要枚举rd以内的所有完全平方数,就可以求出对应的 x 值并进行判断了,但要注意:
1、必须要有1x<r才能统计。
2、为避免重复,必须判断是否 gcd(r+x,rx)=d
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = 1e4 + 5;
int r, tot; ll Ans, a[N];
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
int main() {
    int i, d, S, j, cc = 0; cin >> r; S = sqrt(r);
    for (i = 1; i <= S; i++)
        if (r % i == 0) {
            a[++cc] = i; a[++cc] = 2ll * i;
            if (r / i != i) a[++cc] = r / i,
                a[++cc] = 2ll * (r / i);
        }
    sort(a + 1, a + cc + 1); tot = unique(a + 1, a + cc + 1) - a - 1;
    for (j = 1; j <= tot; j++) {
        d = a[j]; for (i = 1; 1ll * i * i * d <= r; i++) {
            int x = r - i * i * d; if (x <= 0 || x >= r) continue;
            if (gcd(1ll * r + x, 1ll * r - x) != d) continue;
            ll w = 1ll * r * r - 1ll * x * x;
            ll s = sqrt(w); if (s * s == w) Ans++;
        }
    }
    cout << (Ans + 1) * 4 << endl;
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值