[BZOJ4650][NOI2016]优秀的拆分 各数据点解法

60pts:模拟 O(n4)

直接 O(n2) 枚举每个子串,再 O(n) 枚举一个拆分,再进行一次 O(n) 判断。总复杂度 O(n4)
此外,注意到前 4 个数据点的字符串字符全部相同,因此特判一下,此时任意一个长度为偶数的子串的任意一个长度为偶数的拆分都是合法的。

70pts:哈希 O(n3)

可以发现,判断一个拆分是否合法需要 O(n) 的时间。因此使用哈希,可以将判定的复杂度从 O(n) 降到 O(1)

95pts:分析+哈希 O(n2)

可以想到,如果枚举AA的最后一个字符 i (从1 n1 ),那么这时候对答案的贡献为:
i 结尾的AA形式的子串个数 i+1 开头的AA形式的子串个数。
记以 i 开头的AA形式的子串个数为le[i],以 i 结尾的AA形式的子串个数为ri[i],那么答案就是 n1i=1ri[i]le[i+1]
le[i] ri[i] 可以枚举端点后用哈希判断。

100pts:后缀数组 O(nlogn)

可以看出, le ri 需要 O(n2) 的时间求出。怎样优化呢?
首先枚举AA子串长的一半(记为 i ),再枚举所有满足i|j i+jn j
此时,先查询子串[ji+1,j1] [j+1,i+j1] 的最长公共后缀,以及子串 [j,j+i1] [j+i,j+2i1] 的最长公共前缀,记为 l r。可以用后缀数组 O(nlogn) 预处理 O(1) 求出。
这时候,可以看出, [jl,j+r1] [i+jl,i+j+r1] 是原串的一个公共子串。此时,如果 l+ri ,那么就找到了 l+ri+1 个长度为 2i 的AA串,他们的左端点从 jl j+ri ,右端点从 jl+2i1 一直到 j+r+i1 。也就是说,把 le [jl,j+ri] 区间加 1 ,再把ri [jl+2i1,j+r+i1] 区间加 1 ,这一步骤可以差分实现。
同时,由于这里将AA的左端点限制在了[ji+1,j]的范围内,因此这样操作,就能不重不漏地计算出 le ri
同样,结果为 n1i=1ri[i]le[i+1]
感觉NOI2016难度比往年大很多,但暴力分也送的多……
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
typedef long long ll;
const int N = 6e4 + 5, LogN = 18;
int w[N], Log[N], le[N], ri[N];
struct SA {
    char s[N]; int n, sa[N], rank[N], height[N], RMQ[N][LogN];
    void init() {
        int *x = rank, *y = height;
        int i, j, m = 26, k; memset(w, 0, sizeof(w));
        memset(rank, 0, sizeof(rank));
        for (i = 1; i <= n; i++) w[x[i] = s[i] - 'a' + 1]++;
        for (i = 2; i <= m; i++) w[i] += w[i - 1];
        for (i = 1; i <= n; i++) sa[w[x[i]]--] = i;
        for (k = 1; k < n; k <<= 1, swap(x, y)) {
            int tt = 0; for (i = n - k + 1; i <= n; i++) y[++tt] = i;
            for (i = 1; i <= n; i++) if (sa[i] > k) y[++tt] = sa[i] - k;
            memset(w, 0, sizeof(w));
            for (i = 1; i <= n; i++) w[x[i]]++;
            for (i = 2; i <= m; i++) w[i] += w[i - 1];
            for (i = n; i; i--) sa[w[x[y[i]]]--] = y[i];
            m = 0; for (i = 1; i <= n; i++) {
                int u = sa[i], v = sa[i - 1];
                y[u] = x[u] != x[v] || x[u + k] != x[v + k] ? ++m : m;
            }
            if (m == n) break;
        }
        if (y != rank) copy(y, y + n + 1, rank);
        height[1] = 0; for (i = 1, k = 0; i <= n; i++) {
            if (k) k--; int u = sa[rank[i] - 1];
            while (s[i + k] == s[u + k]) k++;
            height[rank[i]] = k;
        }
        for (i = 1; i <= n; i++) RMQ[i][0] = height[i];
        for (j = 1; j <= 16; j++) for (i = 1; i + (1 << j) - 1 <= n; i++)
            RMQ[i][j] = min(RMQ[i][j - 1], RMQ[i + (1 << j - 1)][j - 1]);
    }
    int lcp(int x, int y) {
        if (x == y) return n - x + 1;
        int l = rank[x], r = rank[y], z;
        if (l > r) swap(l, r); l++; z = Log[r - l + 1];
        return min(RMQ[l][z], RMQ[r - (1 << z) + 1][z]);
    }
} S, T;
int LCP(int x, int y) {
    if (x == S.n + 1 || y == S.n + 1) return 0;
    return S.lcp(x, y);
}
int LCS(int x, int y) {
    if (!x || !y) return 0;
    return T.lcp(T.n - x + 1, T.n - y + 1);
}
void work() {
    int i, j, n; scanf("%s", S.s + 1); n = S.n = T.n = strlen(S.s + 1);
    for (i = n; i; i--) T.s[n - i + 1] = S.s[i]; S.init(); T.init();
    memset(le, 0, sizeof(le)); memset(ri, 0, sizeof(ri));
    for (i = 1; (i << 1) <= n; i++) for (j = i; j + i <= n; j += i) {
        int l = min(i - 1, LCS(j - 1, j + i - 1)), r = min(i, LCP(j, j + i));
        if (l + r >= i) {
            le[j - l]++; le[j + r - i + 1]--;
            ri[j - l + (i << 1) - 1]++; ri[j + r + i]--;
        }
    }
    for (i = 2; i <= n; i++) le[i] += le[i - 1];
    for (i = 2; i <= n; i++) ri[i] += ri[i - 1]; ll ans = 0;
    for (i = 1; i < n; i++) ans += 1ll * ri[i] * le[i + 1];
    printf("%lld\n", ans);
}
int main() {
    int i, T = read(); Log[0] = -1;
    for (i = 1; i <= 6e4; i++) Log[i] = Log[i >> 1] + 1;
    while (T--) work();
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值