由于打完一场比赛后胜方和负方都有收益,因此直接做不好做。
可以假设
m
m
场比赛双方都输,然后统计收益。假设这时候第对胜
wi
w
i
场,输
li
l
i
场。
然后就相当于对
m
m
场比赛都选择一个队作为胜方,这样就使得只有胜方有收益了。
这时候如果最后第个队胜了
j
j
场,那么第个队的实际收益将是:
Ci×(wi+j)2+Di×(li−j)2
C
i
×
(
w
i
+
j
)
2
+
D
i
×
(
l
i
−
j
)
2
我们知道,假设 m m 场比赛双方都输时,第个队的收益是 Ci×w2i+Di×l2i C i × w i 2 + D i × l i 2 。
增量为:
Ci×(wi+j)2+Di×(li−j)2−Ci×w2i−Di×l2i
C
i
×
(
w
i
+
j
)
2
+
D
i
×
(
l
i
−
j
)
2
−
C
i
×
w
i
2
−
D
i
×
l
i
2
=Ci×(2×wi×j+j2)+Di×(−2×li×j+j2)
=
C
i
×
(
2
×
w
i
×
j
+
j
2
)
+
D
i
×
(
−
2
×
l
i
×
j
+
j
2
)
=2×(Ci×wi−Di×li)×j+(Ci+Di)×j2
=
2
×
(
C
i
×
w
i
−
D
i
×
l
i
)
×
j
+
(
C
i
+
D
i
)
×
j
2
建一个费用流的模型:
m m 个点表示 m m 场比赛;
个点 Y1,Y2,...,Yn Y 1 , Y 2 , . . . , Y n 表示 n n 支球队;
源点和汇点。
建图:
(1)由 S S 向所有的建一条容量为 1 1 ,费用为的边,表示一场比赛只有一个胜方;
(2)对于所有的 1≤i≤m 1 ≤ i ≤ m :
<1>由 Xi X i 向 Yai Y a i 建一条容量为 1 1 ,费用为的边。
<2>由 Xi X i 向 Ybi Y b i 建一条容量为 1 1 ,费用为的边。
易得,这样流入 Yi Y i 的流量就是第 i i 支球队在次比赛中的胜场次数。
(3)由所有的 Yi Y i 向 T T 建一条边,容量为的入度,
费用 cost c o s t 与这条边的流量 x x 的关系式为:
关键问题在于 cost c o s t 是 x x 的二次函数,不能直接建边。
而对于任意正整数,有:
1+3+5+7+...+(2x−1)=x2
1
+
3
+
5
+
7
+
.
.
.
+
(
2
x
−
1
)
=
x
2
因此如果要建一条边,使这条边的费用等于通过这条边流量的二次方,就可以:
把容量为 c c 的边拆成条容量为 1 1 的边,第条边的单位费用为 2i−1 2 i − 1 。
就可以满足条件。
(3)中也可以这样拆边,设 Yi Y i 的入度为 c c ,就可以:
由向 T T 建条边,容量为 1 1 ,第条边的单位费用为:
2×(Ci×wi−Di×li)+(Ci+Di)×(2×j−1)
2
×
(
C
i
×
w
i
−
D
i
×
l
i
)
+
(
C
i
+
D
i
)
×
(
2
×
j
−
1
)
这样就达到了目的。
时间复杂度 O(能过) O ( 能 过 ) 。
代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read()
{
int res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
return bo ? ~res + 1 : res;
}
const int N = 4e5 + 5, INF = 0x3f3f3f3f;
int n, m, win[N], lose[N], C[N], D[N], A[N], B[N], ecnt = 1, nxt[N],
adj[N], go[N], cap[N], cost[N], S, T, in[N], dis[N], len,
que[N << 2], ans;
bool vis[N], orz[N];
void add_edge(int u, int v, int w, int x)
{
nxt[++ecnt] = adj[u]; adj[u] = ecnt; go[ecnt] = v;
cap[ecnt] = w; cost[ecnt] = x;
nxt[++ecnt] = adj[v]; adj[v] = ecnt; go[ecnt] = u;
cap[ecnt] = 0; cost[ecnt] = -x;
}
bool spfa()
{
for (int i = S; i <= T; i++) dis[i] = INF, vis[i] = orz[i] = 0;
dis[que[len = 1] = S] = 0;
for (int i = 1; i <= len; i++)
{
int u = que[i]; vis[u] = 0;
for (int e = adj[u], v; e; e = nxt[e])
if (cap[e] && dis[u] + cost[e] < dis[v = go[e]])
{
dis[v] = dis[u] + cost[e];
if (!vis[v]) vis[que[++len] = v] = 1;
}
}
return dis[T] < INF;
}
int dfs(int u, int flow)
{
if (u == T) return ans += flow * dis[T], flow;
orz[u] = 1;
int res = 0, delta;
for (int e = adj[u], v; e; e = nxt[e])
if (cap[e] && !orz[v = go[e]] && dis[u] + cost[e] == dis[v])
{
delta = dfs(v, min(cap[e], flow - res));
if (delta)
{
cap[e] -= delta; cap[e ^ 1] += delta;
res += delta; if (res == flow) break;
}
}
return res;
}
int mcmf()
{
ans = 0;
while (spfa()) dfs(S, INF);
return ans;
}
int main()
{
n = read(); m = read();
for (int i = 1; i <= n; i++)
win[i] = read(), lose[i] = read(),
C[i] = read(), D[i] = read();
for (int i = 1; i <= m; i++)
lose[A[i] = read()]++,
lose[B[i] = read()]++;
S = 1; T = n + m + 2;
for (int i = 2; i <= m + 1; i++)
add_edge(S, i, 1, 0);
for (int i = 1; i <= m; i++)
add_edge(i + 1, A[i] + m + 1, 1, 0),
add_edge(i + 1, B[i] + m + 1, 1, 0),
in[A[i]]++, in[B[i]]++;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= in[i]; j++)
add_edge(i + m + 1, T, 1,
(C[i] * win[i] - D[i] * lose[i] << 1) +
(C[i] + D[i]) * ((j << 1) - 1));
int sum = 0;
for (int i = 1; i <= n; i++)
sum += C[i] * win[i] * win[i] + D[i] * lose[i] * lose[i];
cout << sum + mcmf() << endl;
return 0;
}