[BZOJ1449][JSOI2009]球队收益(费用流)

由于打完一场比赛后胜方和负方都有收益,因此直接做不好做。
可以假设 m m 场比赛双方都输,然后统计收益。假设这时候第i对胜 wi w i 场,输 li l i 场。
然后就相当于对 m m 场比赛都选择一个队作为胜方,这样就使得只有胜方有收益了。
这时候如果最后第i个队胜了 j j 场,那么第i个队的实际收益将是:

Ci×(wi+j)2+Di×(lij)2 C i × ( w i + j ) 2 + D i × ( l i − j ) 2

我们知道,假设 m m 场比赛双方都输时,第i个队的收益是 Ci×w2i+Di×l2i C i × w i 2 + D i × l i 2
增量为:
Ci×(wi+j)2+Di×(lij)2Ci×w2iDi×l2i C i × ( w i + j ) 2 + D i × ( l i − j ) 2 − C i × w i 2 − D i × l i 2

=Ci×(2×wi×j+j2)+Di×(2×li×j+j2) = C i × ( 2 × w i × j + j 2 ) + D i × ( − 2 × l i × j + j 2 )

=2×(Ci×wiDi×li)×j+(Ci+Di)×j2 = 2 × ( C i × w i − D i × l i ) × j + ( C i + D i ) × j 2

建一个费用流的模型:
m m 个点X1,X2,...,Xm表示 m m 场比赛;
n个点 Y1,Y2,...,Yn Y 1 , Y 2 , . . . , Y n 表示 n n 支球队;
源点和汇点S,T
建图:
(1)由 S S 向所有的Xi建一条容量为 1 1 ,费用为0的边,表示一场比赛只有一个胜方;
(2)对于所有的 1im 1 ≤ i ≤ m
<1>由 Xi X i Yai Y a i 建一条容量为 1 1 ,费用为0的边。
<2>由 Xi X i Ybi Y b i 建一条容量为 1 1 ,费用为0的边。
易得,这样流入 Yi Y i 的流量就是第 i i 支球队在m次比赛中的胜场次数。
(3)由所有的 Yi Y i T T 建一条边,容量为Yi的入度,
费用 cost c o s t 与这条边的流量 x x 的关系式为:
cost=2×(Ci×wiDi×li)×x+(Ci+Di)×x2

关键问题在于 cost c o s t x x 的二次函数,不能直接建边。
而对于任意正整数x,有:
1+3+5+7+...+(2x1)=x2 1 + 3 + 5 + 7 + . . . + ( 2 x − 1 ) = x 2

因此如果要建一条边,使这条边的费用等于通过这条边流量的二次方,就可以:
把容量为 c c 的边拆成c条容量为 1 1 的边,第i条边的单位费用为 2i1 2 i − 1
就可以满足条件。
(3)中也可以这样拆边,设 Yi Y i 的入度为 c c ,就可以:
Yi T T c条边,容量为 1 1 ,第j条边的单位费用为:
2×(Ci×wiDi×li)+(Ci+Di)×(2×j1) 2 × ( C i × w i − D i × l i ) + ( C i + D i ) × ( 2 × j − 1 )

这样就达到了目的。
时间复杂度 O() O ( 能 过 )
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read()
{
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 4e5 + 5, INF = 0x3f3f3f3f;
int n, m, win[N], lose[N], C[N], D[N], A[N], B[N], ecnt = 1, nxt[N],
adj[N], go[N], cap[N], cost[N], S, T, in[N], dis[N], len,
que[N << 2], ans;
bool vis[N], orz[N];
void add_edge(int u, int v, int w, int x)
{
    nxt[++ecnt] = adj[u]; adj[u] = ecnt; go[ecnt] = v;
    cap[ecnt] = w; cost[ecnt] = x;
    nxt[++ecnt] = adj[v]; adj[v] = ecnt; go[ecnt] = u;
    cap[ecnt] = 0; cost[ecnt] = -x;
}
bool spfa()
{
    for (int i = S; i <= T; i++) dis[i] = INF, vis[i] = orz[i] = 0;
    dis[que[len = 1] = S] = 0;
    for (int i = 1; i <= len; i++)
    {
        int u = que[i]; vis[u] = 0;
        for (int e = adj[u], v; e; e = nxt[e])
            if (cap[e] && dis[u] + cost[e] < dis[v = go[e]])
            {
                dis[v] = dis[u] + cost[e];
                if (!vis[v]) vis[que[++len] = v] = 1;
            }
    }
    return dis[T] < INF;
}
int dfs(int u, int flow)
{
    if (u == T) return ans += flow * dis[T], flow;
    orz[u] = 1;
    int res = 0, delta;
    for (int e = adj[u], v; e; e = nxt[e])
        if (cap[e] && !orz[v = go[e]] && dis[u] + cost[e] == dis[v])
        {
            delta = dfs(v, min(cap[e], flow - res));
            if (delta)
            {
                cap[e] -= delta; cap[e ^ 1] += delta;
                res += delta; if (res == flow) break;
            }
        }
    return res;
}
int mcmf()
{
    ans = 0;
    while (spfa()) dfs(S, INF);
    return ans;
}
int main()
{
    n = read(); m = read();
    for (int i = 1; i <= n; i++)
        win[i] = read(), lose[i] = read(),
        C[i] = read(), D[i] = read();
    for (int i = 1; i <= m; i++)
        lose[A[i] = read()]++,
        lose[B[i] = read()]++;
    S = 1; T = n + m + 2;
    for (int i = 2; i <= m + 1; i++)
        add_edge(S, i, 1, 0);
    for (int i = 1; i <= m; i++)
        add_edge(i + 1, A[i] + m + 1, 1, 0),
        add_edge(i + 1, B[i] + m + 1, 1, 0),
        in[A[i]]++, in[B[i]]++;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= in[i]; j++)
            add_edge(i + m + 1, T, 1,
            (C[i] * win[i] - D[i] * lose[i] << 1) +
            (C[i] + D[i]) * ((j << 1) - 1));
    int sum = 0;
    for (int i = 1; i <= n; i++)
        sum += C[i] * win[i] * win[i] + D[i] * lose[i] * lose[i];
    cout << sum + mcmf() << endl;
    return 0;
}
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值