[BZOJ3594][Scoi2014]方伯伯的玉米田(DP+树状数组优化)

一个结论:每一次拔高玉米的区间的右端点一定是 n n
正确性:如果凭空将[x,n]的玉米高度加 1 1 ,那么最长不降子序列的长度一定会增加。所以当r<n时,操作区间 [l,n] [ l , n ] 绝对比 [l,r] [ l , r ] 优。
根据这个结论,可以设一个状态定义:
f[i][j] f [ i ] [ j ] 表示到了第 i i 个玉米,拔了j次, i i 为结尾的最长不降子序列长度。
转移:

f[i][j]=1+maxai+jah+k and jk{f[h][k]}

也就是说,由于上面的结论得到,拔高后第 i i 个玉米的高度为ai+j,第 h h 个玉米的高度为ah+k,同时区间 [i,n] [ i , n ] 被拔高的次数不能是负数。可以由上面两点限制得出转移条件。
还是不足以通过。由于转移条件的特殊性(是 AxAy and BxBy A x ≥ A y  and  B x ≥ B y 的形式),所以可以使用二维树状数组优化。
具体地,第一维是 ai+j a i + j ,第二维是 j j (考虑到第二维j可能为 0 0 ,因此下标要加1),每计算出一个 f[i][j] f [ i ] [ j ] 就将其存入树状数组。
这时候,为了避免 f[i][j] f [ i ] [ j ] f[i][<j] f [ i ] [ < j ] 转移,枚举 f f 的第二维要从K 0 0 倒着枚举。
复杂度O(nKlogalogK)
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define For(i, a, b) for (i = a; i <= b; i++)
#define Rof(i, a, b) for (i = a; i >= b; i--)
#define Pos(x, k) for (; x <= k; x += x & -x)
#define Neg(x) for (; x; x -= x & -x)
using namespace std;
inline int read()
{
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 1e4 + 5, M = 555;
int n, K, a[N], f[N][M], T[N][M], ans;
void change(int x, int y, int v)
{
    Pos(x, 7371)
    {
        int z = y;
        Pos(z, 512) T[x][z] = max(T[x][z], v);
    }
}
int ask(int x, int y)
{
    int res = 0;
    Neg(x)
    {
        int z = y;
        Neg(z) res = max(res, T[x][z]);
    }
    return res;
}
int main()
{
    int i, j;
    n = read(); K = read();
    For (i, 1, n) a[i] = read();
    For (i, 1, n) Rof (j, K, 0)
    {
        ans = max(ans, f[i][j] = ask(a[i] + j, j + 1) + 1);
        change(a[i] + j, j + 1, f[i][j]);
    }
    cout << ans << endl;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值