[BZOJ3598][Scoi2014]方伯伯的商场之旅(数位 DP)

Address

洛谷 P3286
BZOJ 3598
LOJ #2215

Solution

  • NOIP 2018 后的第一篇博文,一个新的开始
  • 众所周知,数轴上有一个点集,求一个点到这些点的距离之和最小
  • 则这个点的坐标是这些点的坐标的中位数
  • 而此题显然是一个数位 DP
  • 询问拆成 [ 0 , R ] [0,R] [0,R] [ 0 , L − 1 ] [0,L-1] [0,L1]
  • 下面只讨论 [ 0 , R ] [0,R] [0,R]
  • 定义状态(下面的「位」都是从低到高
  • f [ i ] [ j ] [ 0 / 1 / 2 ] f[i][j][0/1/2] f[i][j][0/1/2] 表示第 1 1 1 位到第 i i i 位,用的数字之和为 j j j ,小于 / 等于 / 大于 R R R 的第 1 1 1 位到第 i i i 位的方案数
  • f c [ i ] [ j ] [ 0 / 1 / 2 ] fc[i][j][0/1/2] fc[i][j][0/1/2] 表示第 1 1 1 位到第 i i i 位,用的数字之和为 j j j ,小于 / 等于 / 大于 R R R 的第 1 1 1 位到第 i i i 位的所有数的数字之和
  • g [ i ] [ j ] [ 0 / 1 / 2 ] g[i][j][0/1/2] g[i][j][0/1/2] 表示第 i i i 位到第 m m m 位,用的数字之和为 j j j ,小于 / 等于 / 大于 R R R 的第 i i i 位到第 m m m 位的方案数
  • g c [ i ] [ j ] [ 0 / 1 / 2 ] gc[i][j][0/1/2] gc[i][j][0/1/2] 表示第 i i i 位到第 m m m 位,用的数字之和为 j j j ,小于 / 等于 / 大于 R R R 的第 i i i 位到第 m m m 位的所有数的数字之和
  • m m m R R R 的位数
  • 大力转移
  • 统计 [ 0 , R ] [0,R] [0,R] 的结果时,考虑枚举中位数所在的位置 i i i 和位置 i i i 的值 j j j
  • 注意, j j j 不能等于 0 0 0
  • 然后枚举比 i i i 低的位的数字之和 k k k
  • 还有比 i i i 高的位的数字之和 h h h
  • 通过 k k k h h h j j j 判断中位数是否在 i i i 位置
  • 再用 g ( c ) [ i + 1 ] [ h ] [ 0 / 1 / 2 ] g(c)[i+1][h][0/1/2] g(c)[i+1][h][0/1/2] f ( c ) [ i − 1 ] [ k ] [ 0 / 1 / 2 ] f(c)[i-1][k][0/1/2] f(c)[i1][k][0/1/2] 统计答案
  • 注意需要根据具体情况决定第三维下标 0 / 1 / 2 0/1/2 0/1/2 是否可以使用
  • 并特判 i = m i=m i=m i = 1 i=1 i=1 的情况

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define For(i, a, b) for (i = a; i <= b; i++)
#define Rof(i, a, b) for (i = a; i >= b; i--)

typedef long long ll;

const int N = 70, M = 250;

ll L, R, f[N][M][3], g[N][M][3], fc[N][M][3], gc[N][M][3];
int K, tot, a[N];

ll jiejuediao(ll n)
{
	if (n < K) return 0;
	tot = 0;
	while (n) a[++tot] = n % K, n /= K;
	memset(f, 0, sizeof(f));
	memset(g, 0, sizeof(f));
	memset(fc, 0, sizeof(fc));
	memset(gc, 0, sizeof(gc));
	int i, j, k, h, o1, o2, m = tot * (K - 1);
	ll ans = 0;
	For (i, 0, K - 1)
	{
		int op = i > a[1] ? 2 : (i == a[1] ? 1 : 0);
		f[1][i][op]++; fc[1][i][op] += i;
		op = i > a[tot] ? 2 : (i == a[tot] ? 1 : 0);
		g[tot][i][op]++; gc[tot][i][op] += i * tot;
	}
	For (i, 2, tot) For (j, 0, m) For (k, 0, K - 1)
	{
		if (k > j) break;
		if (k < a[i])
		{
			f[i][j][0] += f[i - 1][j - k][0] + f[i - 1][j - k][1]
				+ f[i - 1][j - k][2];
			fc[i][j][0] += fc[i - 1][j - k][0] + fc[i - 1][j - k][1]
				+ fc[i - 1][j - k][2] + (f[i - 1][j - k][0]
				+ f[i - 1][j - k][1] + f[i - 1][j - k][2]) * i * k;
		}
		else if (k > a[i])
		{
			f[i][j][2] += f[i - 1][j - k][0] + f[i - 1][j - k][1]
				+ f[i - 1][j - k][2];
			fc[i][j][2] += fc[i - 1][j - k][0] + fc[i - 1][j - k][1]
				+ fc[i - 1][j - k][2] + (f[i - 1][j - k][0]
				+ f[i - 1][j - k][1] + f[i - 1][j - k][2]) * i * k;
		}
		else
		{
			f[i][j][0] += f[i - 1][j - k][0];
			fc[i][j][0] += fc[i - 1][j - k][0] + f[i - 1][j - k][0] * i * k;
			f[i][j][1] += f[i - 1][j - k][1];
			fc[i][j][1] += fc[i - 1][j - k][1] + f[i - 1][j - k][1] * i * k;
			f[i][j][2] += f[i - 1][j - k][2];
			fc[i][j][2] += fc[i - 1][j - k][2] + f[i - 1][j - k][2] * i * k;
		}
	}
	Rof (i, tot - 1, 1) For (j, 0, m) For (k, 0, K - 1)
	{
		if (k > j) break;
		if (k < a[i])
		{
			g[i][j][0] += g[i + 1][j - k][0] + g[i + 1][j - k][1];
			g[i][j][2] += g[i + 1][j - k][2];
			gc[i][j][0] += gc[i + 1][j - k][0] + gc[i + 1][j - k][1]
				+ (g[i + 1][j - k][0] + g[i + 1][j - k][1]) * i * k;
			gc[i][j][2] += gc[i + 1][j - k][2] + g[i + 1][j - k][2] * i * k;
		}
		else if (k > a[i])
		{
			g[i][j][0] += g[i + 1][j - k][0];
			g[i][j][2] += g[i + 1][j - k][1] + g[i + 1][j - k][2];
			gc[i][j][0] += gc[i + 1][j - k][0] + g[i + 1][j - k][0] * i * k;
			gc[i][j][2] += gc[i + 1][j - k][1] + gc[i + 1][j - k][2]
				+ (g[i + 1][j - k][1] + g[i + 1][j - k][2]) * i * k;
		}
		else
		{
			g[i][j][0] += g[i + 1][j - k][0];
			gc[i][j][0] += gc[i + 1][j - k][0] + g[i + 1][j - k][0] * i * k;
			g[i][j][1] += g[i + 1][j - k][1];
			gc[i][j][1] += gc[i + 1][j - k][1] + g[i + 1][j - k][1] * i * k;
			g[i][j][2] += g[i + 1][j - k][2];
			gc[i][j][2] += gc[i + 1][j - k][2] + g[i + 1][j - k][2] * i * k;
		}
	}
	For (i, 1, tot) For (j, 1, K - 1) For (k, 0, m) For (h, 0, m)
	{
		int mid = (k + j + h >> 1) + 1;
		if (k + 1 > mid || mid > k + j) continue;
		if ((i == tot && k) || (i == 1 && h)) continue;
		if (i == tot) For (o1, 0, 2)
		{
			if ((j == a[i] && o1 == 2) || j > a[i]) continue;
			ans += f[tot - 1][h][o1] * i * h - fc[tot - 1][h][o1];
		}
		if (i == 1) For (o2, 0, 1)
		{
			if (o2 == 1 && j > a[i]) continue;
			ans += gc[2][k][o2] - g[2][k][o2] * i * k;
		}
		if (1 < i && i < tot) For (o1, 0, 2) For (o2, 0, 1)
		{
			if (o2 == 1 && (j > a[i] || (j == a[i] && o1 == 2))) continue;
			ans += (f[i - 1][h][o1] * i * h - fc[i - 1][h][o1])
				* g[i + 1][k][o2];
			ans += (gc[i + 1][k][o2] - g[i + 1][k][o2] * i * k)
				* f[i - 1][h][o1];
		}
	}
	return ans;
}

int main()
{
	std::cin >> L >> R >> K;
	std::cout << jiejuediao(R) - jiejuediao(L - 1) << std::endl;
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值