[Codeforces 1042E]Vasya and Magic Matrix(期望 DP)

Address

Meaning

  • 一个 n n n m m m 列的矩阵,每个位置有个权值
  • 给定一个起始位置 ( r , c ) (r,c) (r,c)
  • 每次等概率随机地移动到一个权值严格比自己小的位置,得分为移动前和移动后的两个位置的欧几里得距离的平方,这样一直移动直到无法移动为止
  • 求得分的期望
  • 1 ≤ n , m ≤ 1000 1\le n,m\le 1000 1n,m1000

Solution

  • 非常简单的期望 DP
  • 先把权值排序,设排序后第 i i i 个位置坐标为 ( x i , y i ) (x_i,y_i) (xi,yi) ,权值为 a i a_i ai
  • f [ i ] f[i] f[i] 表示从第 i i i 个位置开始移动,直到无法移动的期望得分
  • 很容易得出转移
  • f [ i ] = 1 c n t i ∑ j = 1 , a j &lt; a i i − 1 { f [ j ] + ( x i − x j ) 2 + ( y i − y j ) 2 } f[i]=\frac 1{cnt_i}\sum_{j=1,a_j&lt;a_i}^{i-1}\{f[j]+(x_i-x_j)^2+(y_i-y_j)^2\} f[i]=cnti1j=1,aj<aii1{f[j]+(xixj)2+(yiyj)2}
  • 其中 c n t i cnt_i cnti 表示权值严格小于 a i a_i ai 的位置个数
  • 复杂度 O ( n 2 m 2 ) O(n^2m^2) O(n2m2)
  • 强行推一波式子
  • f [ i ] = 1 c n t i ∑ j = 1 , a j &lt; a i i − 1 { f j + x j 2 + y j 2 − 2 x i x j − 2 y i y j } + x i 2 + y i 2 f[i]=\frac 1{cnt_i}\sum_{j=1,a_j&lt;a_i}^{i-1}\{f_j+x_j^2+y_j^2-2x_ix_j-2y_iy_j\}+x_i^2+y_i^2 f[i]=cnti1j=1,aj<aii1{fj+xj2+yj22xixj2yiyj}+xi2+yi2
  • = 1 c n t i ( ∑ j = 1 , a j &lt; a i i − 1 { f j + x j 2 + y j 2 } − 2 x i ∑ j = 1 , a j &lt; a i i − 1 x j − 2 y i ∑ j = 1 , a j &lt; a i i − 1 y j ) + x i 2 + y i 2 =\frac 1{cnt_i}(\sum_{j=1,a_j&lt;a_i}^{i-1}\{f_j+x_j^2+y_j^2\}-2x_i\sum_{j=1,a_j&lt;a_i}^{i-1}x_j-2y_i\sum_{j=1,a_j&lt;a_i}^{i-1}y_j)+x_i^2+y_i^2 =cnti1(j=1,aj<aii1{fj+xj2+yj2}2xij=1,aj<aii1xj2yij=1,aj<aii1yj)+xi2+yi2
  • 参与转移的 j j j 是一段前缀且 j j j 的最大值单调不降
  • 可以维护参与转移的 j j j f j + x j 2 + y j 2 f_j+x_j^2+y_j^2 fj+xj2+yj2 x j x_j xj y j y_j yj 之和
  • 复杂度 O ( n m ) O(nm) O(nm)

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define For(i, a, b) for (i = a; i <= b; i++)

inline int read()
{
	int res = 0; bool bo = 0; char c;
	while (((c = getchar()) < '0' || c > '9') && c != '-');
	if (c == '-') bo = 1; else res = c - 48;
	while ((c = getchar()) >= '0' && c <= '9')
		res = (res << 3) + (res << 1) + (c - 48);
	return bo ? ~res + 1 : res;
}

const int N = 1e6 + 5, ZZQ = 998244353;

int n, m, f[N], inv[N];

struct node
{
	int x, y, val;
} a[N];

inline bool comp(node x, node y)
{
	return x.val < y.val;
}

int main()
{
	int i, j, tn = 0, r, c, p = 1, sum2 = 0, sumx = 0, sumy = 0, sum = 0;
	n = read(); m = read();
	For (i, 1, n) For (j, 1, m)
		c = read(), a[++tn] = {i, j, c};
	n = tn;
	std::sort(a + 1, a + n + 1, comp);
	r = read(); c = read();
	For (i, 1, n) if (a[i].x == r && a[i].y == c) n = i;
	inv[1] = 1;
	For (i, 2, n) inv[i] = 1ll * (ZZQ - ZZQ / i) * inv[ZZQ % i] % ZZQ;
	For (i, 1, n)
	{
		while (p < i && a[p].val < a[i].val)
		{
			sum2 = (1ll * a[p].x * a[p].x +
				1ll * a[p].y * a[p].y + sum2) % ZZQ;
			sumx = (sumx + a[p].x) % ZZQ;
			sumy = (sumy + a[p].y) % ZZQ;
			sum = (sum + f[p]) % ZZQ;
			p++;
		}
		int delta = (1ll * a[i].x * a[i].x +
			1ll * a[i].y * a[i].y) % ZZQ * (p - 1) % ZZQ;
		delta = (delta + sum2) % ZZQ;
		delta = (delta - 2ll * a[i].x * sumx % ZZQ + ZZQ) % ZZQ;
		delta = (delta - 2ll * a[i].y * sumy % ZZQ + ZZQ) % ZZQ;
		f[i] = 1ll * (delta + sum) * inv[p - 1] % ZZQ;
	}
	std::cout << f[n] << std::endl;
	return 0;
}
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值