LeetCode Triangle

题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.


典型的dp问题。

设第i行第j个位置的数为d[i][j],到第i行第j个位置的最小路径总长度len[i][j]=min(len[i-1][j-1],len[i-1][j])+d[i][j],

由底(三角形的顶部)向上(三角形底部)计算递推即可。

由于只有上一行信息有用,因此在每行计算完毕后即可清除上一行的记录len[i-1][],从而使空间开销为O(n)。


代码:

(偷了个懒,如果使用两个一维数组或vector替代num效率会更高些)

class Solution {
public:
    int minimumTotal(vector<vector<int> > &triangle) {
		if(triangle.empty())
			return 0;
        vector<vector<int>> num(triangle.size(),vector<int>());	//记录到达相应位置的最小和
		num[0].push_back(triangle[0][0]);
		for(int i=1;i<triangle.size();i++)	//dp
		{
			num[i].push_back(num[i-1][0]+triangle[i][0]);
			for(int j=1;j<triangle[i].size()-1;j++)
				num[i].push_back(min(num[i-1][j-1],num[i-1][j])+triangle[i][j]);
			num[i].push_back(num[i-1].back()+triangle[i].back());
			num[i-1].clear();
		}
		int min=num[triangle.size()-1][0];	//寻找底部的最小值
		for(int i=1;i<triangle.size();i++)
			if(min>num[triangle.size()-1][i])
				min=num[triangle.size()-1][i];
		return min;	//返回最小值
    }
};




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值