AI论文《Learning representations by back-propagating errors》反向传播算法解读

这篇 《Learning representations by back-propagating errors》(通过反向传播误差来学习表征)是深度学习历史上最重要、最具影响力的论文之一。它发表于1986年,由 David E. Rumelhart、Geoffrey E. Hinton 和 Ronald J. Williams 共同撰写,刊登在顶级期刊 Nature 上。

下面我将为你逐层解读这篇论文的核心思想、技术贡献与历史意义,用通俗易懂的方式讲清楚它到底做了什么、为什么重要。


🌟 一、背景:为什么需要这篇论文?

在1980年代之前,主流的神经网络模型是单层感知机(Perceptron)。但早在1969年,Minsky 和 Papert 就在《Perceptrons》一书中指出:

单层感知机无法解决非线性可分问题,比如 XOR(异或)

这直接导致了“AI寒冬”——人们认为神经网络没有前途。

但 Rumelhart 和 Hinton 团队意识到:

  • 如果引入隐藏层(hidden units),并让网络自动学习特征表示(而不是手工设计),就可能突破这一限制。
  • 关键问题是:如何训练多层网络?
    → 因为隐藏层的“正确输出”是未知的,传统方法无法更新其权重。

于是,他们提出了一个优雅而强大的解决方案:反向传播(Backpropagation)。


🔍 二、论文核心思想一句话总结

通过链式法则,从输出层的误差出发,反向计算每一层权重对总误差的贡献,并用梯度下降法逐步调整所有连接权重,使网络学会内部表征


🧠 三、关键技术解析

1. 网络结构

  • 前馈多层网络(Feedforward network):
    • 输入层 → 任意多个隐藏层 → 输出层
    • 不允许层内连接或反向连接(即不是循环网络)
  • 每个神经元使用 Sigmoid 激活函数(论文中写作 logistic function):
    y j = 1 1 + e − x j , 其中  x j = ∑ i w j i y i y_j = \frac{1}{1 + e^{-x_j}}, \quad \text{其中 } x_j = \sum_i w_{ji} y_i yj=1+exj1,其中 xj=iwjiyi

✅ 这是非线性的关键!线性叠加无法解决 XOR,但 Sigmoid 引入了非线性。


2. 前向传播(Forward Pass)

  • 给定输入向量,逐层计算每个神经元的输出:
    • 先算加权和 x j = ∑ i w j i y i x_j = \sum_i w_{ji} y_i xj=iwjiyi
    • 再通过激活函数得到 y j = f ( x j ) y_j = f(x_j) yj=f(xj)
  • 最终得到输出层预测值 y ^ \hat{y} y^

3. 损失函数

  • 使用均方误差(MSE)作为目标函数:
    E = 1 2 ∑ j ( d j − y j ) 2 E = \frac{1}{2} \sum_j (d_j - y_j)^2 E=21j(djyj)2
    其中 d j d_j dj 是期望输出, y j y_j yj 是实际输出。

4. 反向传播(Backward Pass)——论文最大贡献!

这是全文最精妙的部分。作者利用微积分的链式法则,高效计算损失对每个权重的偏导数。

步骤分解:
(1)输出层误差项(δ)

对输出单元 j j j
δ j = ∂ E ∂ x j = ( y j − d j ) ⋅ y j ( 1 − y j ) \delta_j = \frac{\partial E}{\partial x_j} = (y_j - d_j) \cdot y_j (1 - y_j) δj=xjE=(yjdj)yj(1yj)

  • ( y j − d j ) (y_j - d_j) (yjdj):预测误差
  • y j ( 1 − y j ) y_j(1 - y_j) yj(1yj):Sigmoid 导数(控制误差放大/衰减)
(2)隐藏层误差项

对隐藏单元 i i i
δ i = ( ∑ j δ j w j i ) ⋅ y i ( 1 − y i ) \delta_i = \left( \sum_j \delta_j w_{ji} \right) \cdot y_i (1 - y_i) δi=(jδjwji)yi(1yi)

  • ∑ j δ j w j i \sum_j \delta_j w_{ji} jδjwji上层误差通过权重“反传”回来
  • 再乘以本层激活函数导数

💡 这就是“反向传播”的本质:误差从输出层逐层向后传递,每层根据上游误差和自身激活状态分配责任

(3)权重更新

对任意连接 w j i w_{ji} wji(从 i i i j j j):
∂ E ∂ w j i = δ j ⋅ y i \frac{\partial E}{\partial w_{ji}} = \delta_j \cdot y_i wjiE=δjyi

  • 更新规则(梯度下降):
    w j i ← w j i − η ⋅ δ j y i w_{ji} \leftarrow w_{ji} - \eta \cdot \delta_j y_i wjiwjiηδjyi
    其中 η \eta η 是学习率。

🧪 四、实验验证:XOR 与家族关系

论文用两个经典任务证明方法有效性:

1. XOR 问题

  • 输入:(0,0)→0, (0,1)→1, (1,0)→1, (1,1)→0
  • 使用 2-2-1 网络(2输入、2隐藏、1输出)
  • 训练后,隐藏层神经元自动学会“检测差异”和“检测相同”,组合出 XOR 逻辑

首次证明多层网络能学习非线性决策边界

2. 家族关系推理

  • 输入三元组如 “(Colin has mother Victoria)”、“(Victoria has husband Arthur)”
  • 网络需回答 “Who is Colin’s uncle?”
  • 隐藏层自发形成分布式表征,捕捉“母亲”、“丈夫”等语义角色

证明网络不仅能分类,还能学习抽象概念和关系


🌍 五、历史意义与影响

贡献说明
复兴神经网络研究打破“感知机局限”魔咒,开启连接主义新纪元
奠定深度学习基础BP 成为训练 CNN、RNN、Transformer 的标配算法
提出“表征学习”思想隐藏层自动发现任务相关特征,无需人工设计
推动AI工程化为后来 LeCun 的手写识别、Hinton 的深度信念网络铺路

Geoffrey Hinton 后来笑称:“我们只是把已有的数学(链式法则)用在了对的地方。”


⚠️ 六、局限与后续发展

  • 梯度消失问题:深层网络中,Sigmoid 导数接近0,导致早期层几乎不更新 → 后来被 ReLU、残差连接等解决。
  • 需要大量标注数据:BP 依赖监督信号,难以用于无标签场景 → 推动自监督、对比学习发展。
  • 生物合理性存疑:大脑是否真的用“反向传播”?Hinton 近年提出 Forward-Forward 算法 作为替代猜想。

📚 七、延伸建议

如果你感兴趣,可以:

  1. 读原文Nature 官网链接(仅4页!)
  2. 动手实现:用 NumPy 写一个 XOR 的 BP 网络(非常有启发性)
  3. 看可视化:网上有很多 BP 动画,展示误差如何“倒流”

❤️ 最后一句话总结:

这篇论文不是发明了新数学,而是赋予了旧数学新的使命——让机器学会自己“看懂”世界

如果你想,我可以带你一步步推导 XOR 的 BP 过程,或者用代码演示它怎么工作!要不要试试? 😊

在模型无关的分层强化学习中,学习表示是一项重要的任务。学习表示是指通过提取有用的信息和特征来将观察数据转化为表示向量。这些表示向量可以用于解决强化学习问题中的决策和行动选择。 模型无关的分层强化学习是指不依赖于环境模型的强化学习方法。它通常由两个部分组成:低层控制策略和高层任务规划器。低层控制策略负责实际的行动选择和执行,而高层任务规划器则负责指导低层控制策略的决策过程。 学习表示在模型无关的分层强化学习中起到至关重要的作用。通过学习适当的表示,可以提高对观察数据的理解能力,使得模型能够捕捉到环境中的重要特征和结构。这些表示可以显著减少观察数据的维度,并提供更高层次的抽象,从而简化了决策和规划的过程。 学习表示的方法多种多样,包括基于深度学习的方法和基于特征选择的方法。基于深度学习的方法,如卷积神经网络和循环神经网络,可以通过学习多层次的特征表示来提取环境观察数据的有用信息。而基于特征选择的方法则通过选择最有信息量的特征来减少表示的维度,从而简化了模型的复杂度。 总之,学习表示在模型无关的分层强化学习中起到了至关重要的作用。通过学习适当的表示,模型可以更好地理解观察数据并进行决策和规划。不同的方法可以用来实现学习表示,包括基于深度学习的方法和基于特征选择的方法。这些方法的选择取决于具体任务和问题的需求。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xyzroundo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值