基本信息
作者 | DE Rumelhart | doi | https://doi.org/10.1038/323533a0 |
---|---|---|---|
发表时间 | 1986 | 期刊 | Nature |
网址 | https://doi.org/10.1038/323533a0 |
研究背景
1. What’s known 既往研究已证实
感知机:多层感知机并不能自动更新权值,而是需要手动去设计权值。
2. What’s new 创新点
知识和学习发生在大脑主要是通过神经元间突触的形成与变化,简要表述为赫布法则。
3. What’s are the implications 意义
不知道隐藏层的输入是多少,那么也无法调整其权重,这才为BP算法的出现带来了现实意义。
研究方法
1. 反向传播
2. 隐藏层
简单来说,隐藏层是用来提取特征的。隐藏层的作用就是把具体的特征变得抽象。
结果与讨论
- 单词向量优于以前的技术状态。
- 使用非常简单的模型架构可以训练高质量的词向量。计算复杂性低,可从更大的数据集中计算非常精确的高维词向量。
- 通过Word2vec训练出的词向量可以用于许多自然语言处理任务,例如词义相似度计算、命名实体识别和情感分析等。
个人思考与启发
了解反向传播原理。
重要图
文献中重要的图记录下来