Learning representations by back-propagating errors论文解读

基本信息

作者DE Rumelhartdoihttps://doi.org/10.1038/323533a0
发表时间1986期刊Nature
网址https://doi.org/10.1038/323533a0

研究背景

1. What’s known 既往研究已证实
感知机:多层感知机并不能自动更新权值,而是需要手动去设计权值。
在这里插入图片描述

2. What’s new 创新点
知识和学习发生在大脑主要是通过神经元间突触的形成与变化,简要表述为赫布法则。

3. What’s are the implications 意义
不知道隐藏层的输入是多少,那么也无法调整其权重,这才为BP算法的出现带来了现实意义。

研究方法

1. 反向传播
在这里插入图片描述
在这里插入图片描述
2. 隐藏层
简单来说,隐藏层是用来提取特征的。隐藏层的作用就是把具体的特征变得抽象。
在这里插入图片描述

结果与讨论

  1. 单词向量优于以前的技术状态。
  2. 使用非常简单的模型架构可以训练高质量的词向量。计算复杂性低,可从更大的数据集中计算非常精确的高维词向量。
  3. 通过Word2vec训练出的词向量可以用于许多自然语言处理任务,例如词义相似度计算、命名实体识别和情感分析等。

个人思考与启发

了解反向传播原理。

重要图

文献中重要的图记录下来
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值