【AI探索】Node.js打造大模型可视化:llm-viz,本地轻松查看模型结构

1,关于项目

https://www.bilibili.com/video/BV1eF4m1c7NC/

【ai技术】(1):发现一个大模型可视化项目,使用nodejs编写的,llm-viz,可以本地运行展示大模型结构。

https://github.com/bbycroft/llm-viz

或者镜像:

https://gitcode.com/bbycroft/llm-viz.git

项目 主要项目有:

LLM 可视化:运行推理的 GPT 风格 LLM 网络的 3D 互动模型。 [WIP] CPU 模拟:一个带有完整执行模型的 2D 数字电路图编辑器,展示了一个简单的基于 RISC-V 的 CPU。

LLM 可视化 这个项目显示了一个 GPT 风格网络的工作实现的三维模型。也就是说,这是 OpenAI 的 GPT-2、GPT-3(或许还有 GPT-4)所使用的网络架构。

首次展示的带有工作权重的第一个网络是一个小的网络,它可以对 A、B 和 C 的较小列表进行排序。这是 Andrej Karpathy 的 minGPT 实现中的演示示例模型。

渲染器还支持可视化任意大小的网络,并且可以与较小的 gpt2 尺寸一起工作,尽管没有下载权重(它是数百兆字节)。

CPU 模拟(WIP;尚未公开!) 这个项目运行 2D 电路图数字电路,并带有完整的编辑器。意图是添加多个教程,展示例如:

如何构建一个简单的 RISC-V CPU 构成部分到门级:指令解码、ALU、加法等 更高层次的 CPU 概念,如各种级别的流水线、缓存等 本地运行 安装依赖项:yarn 启动开发服务器:yarn dev

2,本地运行

git clone https://gitcode.com/bbycroft/llm-viz.git

yarn install 
yarn run dev

3,关于大模型的结构:

https://zhuanlan.zhihu.com/p/665531989

ChatGLMForConditionalGeneration(
  (transformer): ChatGLMModel(
    (embedding): Embedding(
      (word_embeddings): Embedding(65024, 4096)
    )
    (rotary_pos_emb): RotaryEmbedding()
    (encoder): GLMTransformer(
      (layers): ModuleList(
        (0-27): 28 x GLMBlock(
          (input_layernorm): RMSNorm()
          (self_attention): SelfAttention(
            (query_key_value): Linear(in_features=4096, out_features=4608, bias=True)
            (core_attention): CoreAttention(
              (attention_dropout): Dropout(p=0.0, inplace=False)
            )
            (dense): Linear(in_features=4096, out_features=4096, bias=False)
          )
          (post_attention_layernorm): RMSNorm()
          (mlp): MLP(
            (dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False)
            (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False)
          )
        )
      )
      (final_layernorm): RMSNorm()
    )
    (output_layer): Linear(in_features=4096, out_features=65024, bias=False)
  )
)

4,fastllm 介绍

https://zhuanlan.zhihu.com/p/644641341

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值