1,关于项目
https://www.bilibili.com/video/BV1eF4m1c7NC/
【ai技术】(1):发现一个大模型可视化项目,使用nodejs编写的,llm-viz,可以本地运行展示大模型结构。
https://github.com/bbycroft/llm-viz
或者镜像:
https://gitcode.com/bbycroft/llm-viz.git
项目 主要项目有:
LLM 可视化:运行推理的 GPT 风格 LLM 网络的 3D 互动模型。 [WIP] CPU 模拟:一个带有完整执行模型的 2D 数字电路图编辑器,展示了一个简单的基于 RISC-V 的 CPU。
LLM 可视化 这个项目显示了一个 GPT 风格网络的工作实现的三维模型。也就是说,这是 OpenAI 的 GPT-2、GPT-3(或许还有 GPT-4)所使用的网络架构。
首次展示的带有工作权重的第一个网络是一个小的网络,它可以对 A、B 和 C 的较小列表进行排序。这是 Andrej Karpathy 的 minGPT 实现中的演示示例模型。
渲染器还支持可视化任意大小的网络,并且可以与较小的 gpt2 尺寸一起工作,尽管没有下载权重(它是数百兆字节)。
CPU 模拟(WIP;尚未公开!) 这个项目运行 2D 电路图数字电路,并带有完整的编辑器。意图是添加多个教程,展示例如:
如何构建一个简单的 RISC-V CPU 构成部分到门级:指令解码、ALU、加法等 更高层次的 CPU 概念,如各种级别的流水线、缓存等 本地运行 安装依赖项:yarn 启动开发服务器:yarn dev
2,本地运行
git clone https://gitcode.com/bbycroft/llm-viz.git
yarn install
yarn run dev
3,关于大模型的结构:
https://zhuanlan.zhihu.com/p/665531989
ChatGLMForConditionalGeneration(
(transformer): ChatGLMModel(
(embedding): Embedding(
(word_embeddings): Embedding(65024, 4096)
)
(rotary_pos_emb): RotaryEmbedding()
(encoder): GLMTransformer(
(layers): ModuleList(
(0-27): 28 x GLMBlock(
(input_layernorm): RMSNorm()
(self_attention): SelfAttention(
(query_key_value): Linear(in_features=4096, out_features=4608, bias=True)
(core_attention): CoreAttention(
(attention_dropout): Dropout(p=0.0, inplace=False)
)
(dense): Linear(in_features=4096, out_features=4096, bias=False)
)
(post_attention_layernorm): RMSNorm()
(mlp): MLP(
(dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False)
(dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False)
)
)
)
(final_layernorm): RMSNorm()
)
(output_layer): Linear(in_features=4096, out_features=65024, bias=False)
)
)
4,fastllm 介绍
https://zhuanlan.zhihu.com/p/644641341