pytorch动态调整学习率
背景
在神经网络模型的训练过程中,一般采取梯度下降法来对模型的参数进行更新,其中,学习率
α
\alpha
α
控制着梯度更新的步长(step),
α
\alpha
α
越大,意味着下降的越快,到达最优点的速度也越快。学习率较大时,会加速学习,使得模型更容易接近局部或全局最优解。但是在后期会有较大波动,始终难以达到最优。
因此,我们引入学习率衰减的概念,就是在模型训练初期,使用较大的学习率进行优化,随着迭代次数增加,学习率会逐渐进行减小,保证
在神经网络模型的训练过程中,一般采取梯度下降法来对模型的参数进行更新,其中,学习率
α
\alpha
α
控制着梯度更新的步长(step),
α
\alpha
α
越大,意味着下降的越快,到达最优点的速度也越快。学习率较大时,会加速学习,使得模型更容易接近局部或全局最优解。但是在后期会有较大波动,始终难以达到最优。
因此,我们引入学习率衰减的概念,就是在模型训练初期,使用较大的学习率进行优化,随着迭代次数增加,学习率会逐渐进行减小,保证