PyTorch实战:模型训练学习率动态调整策略

pytorch动态调整学习率

背景

在神经网络模型的训练过程中,一般采取梯度下降法来对模型的参数进行更新,其中,学习率

α

\alpha

α

控制着梯度更新的步长(step),

α

\alpha

α

越大,意味着下降的越快,到达最优点的速度也越快。学习率较大时,会加速学习,使得模型更容易接近局部或全局最优解。但是在后期会有较大波动,始终难以达到最优。

因此,我们引入学习率衰减的概念,就是在模型训练初期,使用较大的学习率进行优化,随着迭代次数增加,学习率会逐渐进行减小,保证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值