手把手教你本地CPU环境部署清华大模型ChatGLM-6B,利用量化模型,本地即可开始智能聊天,达到ChatGPT的80%

大家好,今天教你们本地CPU环境部署清华大ChatGLM-6B模型,利用量化模型,每个人都能跑动大模型。ChatGLM-6B是一款出色的中英双语对话模型,拥有超过62亿个参数,可高效地处理日常对话场景。与GLM-130B模型相比,ChatGLM-6B在对话场景处理能力方面表现更加卓越。此外,在使用体验方面,ChatGLM-6B采用了模型量化技术和本地部署技术,为用户提供更加便利和灵活的使用方式。值得一提的是,该模型还能够在单张消费级显卡上顺畅运行,速度较快,是一款非常实用的对话模型。

ChatGLM-6B是清华开发的中文对话大模型的小参数量版本,目前已经开源了,可以单卡部署在个人电脑上,利用 INT4 量化还可以最低部署到 6G 显存的电脑上,在 CPU 也可以运行起来的。

项目地址:mirrors / THUDM / chatglm-6b · GitCode

第1步:下载:

git clone https://gitcode.net/mirrors/THUDM/chatglm-6b.git

**第2步:**进入ChatGLM-6B-main目录下,安装相关依赖

pip install -r requirements.txt

其中 torch安装CPU版本即可。

**第3步:**打开ChatGLM-6B-main目录的web_demo.py文件,源代码:

from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html

tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()

这个是在GPU版本下的代码,现在改为CPU版本下的代码:

from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html

tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).float()
model = model.eval()

模型下载改成THUDM/chatglm-6b-int4,也就是int4量化版本。模型量化到int4是一种将神经网络模型中的参数从浮点数格式调整为4位精度的整数格式的技术,可以显著提高硬件设备的效率和速度,并且适用于需要在低功耗设备上运行的场景。

INT4量化的预训练文件下载地址:https://huggingface.co/THUDM/chatglm-6b-int4/tree/main

第4步:kernel的编译

CPU版本的安装还需要安装好C/C++的编译环境。这里大家可以安装TDM-GCC。

下载地址:https://jmeubank.github.io/tdm-gcc/,大家选择选取TDM-GCC 10.3.0 release下载安装。特别注意:安装的时候在选项gcc选项下方,勾选openmp,这个很重要,踩过坑,直接安装的话后续会报错。

d44f6eb455ef4737b7868b9996bbad31.png

1d3078b2262049028df6ae52a6370e55.png

安装完在cmd中运行”gcc -v”测试是否成功即可。

8e3df00558a64933ba2a3fe0eafef770.png

安装gcc的目的是为了编译c++文件,quantization_kernels.cquantization_kernels_parallel.c00ef846c3a714f9d91963cfdbd04e221.png

quantization_kernels.c文件:

void compress_int4_weight(void *weight, void *out, int n, int m)
{
    for(int i=0;i<n*m;i++)
    {
        (*(unsigned char*)(out)) = ((*(unsigned char*)(weight)) << 4);
        weight += sizeof(char);
        (*(unsigned char*)(out)) |= ((*(unsigned char*)(weight)) & 15);
        weight += sizeof(char);
        out += sizeof(char);
    }
}

void extract_int8_weight_to_float(void *weight, void *scale_list, void *out, int n, int m)
{
	for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
            (*(float*)(out + sizeof(float) * (i * m + j))) = (*(float*)(scale_list + sizeof(float) * i)) * (*(char*)(weight + sizeof(char) * (i * m + j)));
}

void extract_int4_weight_to_float(void *weight, void *scale_list, void *out, int n, int m)
{
	for(int i=0;i<n;i++)
    {
        for(int j=0;j<m;j++)
        {
            (*(float*)(out)) = (*(float*)(scale_list)) * ((*(char*)(weight)) >> 4);
            out += sizeof(float);
            (*(float*)(out)) = (*(float*)(scale_list)) * (((char)((*(unsigned char*)(weight)) << 4))>> 4);
            out += sizeof(float);
            weight += sizeof(char);
        }
        scale_list += sizeof(float);
    }
}

以上C++程序对于每个8位的输入权重值,都会被压缩成一个4位的输出权重值,并存储到指定的输出数组中。这种权重量化方式可以有效减小模型的内存占用,提高模型的推理速度。

第5步:运行web_demo.py文件

注意:如果大家在运行中遇到了错误提示,说明两个文件编译出问题。我们可以手动去编译这两个文件:即在上面下载的D:..\chatglm-6b-int4本地目录下进入cmd,运行两个编译命令:

gcc -fPIC -pthread -fopenmp -std=c99 quantization_kernels.c -shared -o quantization_kernels.so
gcc -fPIC -pthread -fopenmp -std=c99 quantization_kernels_parallel.c -shared -o quantization_kernels_parallel.so

没有报错说明运行成功,目录下看到下面两个新的文件:quantization_kernels_parallel.soquantization_kernels.so。说明编译成功,后面我们手动载入,这里要多加一行代码

model = model.quantize(bits=4, kernel_file="D:..\\chatglm-6b-int4\\quantization_kernels.so")

如果原来代码没有错可以去掉这行。

第6步:web_demo.py文件运行成功

ab52cf9cb92a4d068a85ee8c28d08d16.png

出现地址就大功告成了。

第7步:测试问题

1.鲁迅和周树人是同一个人吗?

ChatGLM的结果:

83f95aa7655b452aa24cb5d4994f866e.png

ChatGPT的结果:

50dca051e3f44c6fb527176ad3691009.png

2.树上9只鸟,用枪打掉1只,还剩几只?

ChatGLM的结果:

e459de5f6fc84faabe16bdc1e76c96f4.png

ChatGPT的结果:

79a7eb5644204547a3649ae398fa1137.png

ChatGLM在某些中文问题和常识问题上超过ChatGPT,但是总体上是不如ChatGPT,他在总结任务上,代码编写上不如ChatGPT,总体达到ChatGPT的80%左右,可以做简单的任务。

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值