保姆级教程!本地部署最强开源语言大模型 Llama3 和中文微调版

读完需要5分钟,速读仅需 1 分钟

1

目录

  • 简介

  • Llama3 介绍和优点

  • Ollama 介绍

  • Lobechat 介绍

  • 安装准备

  • 本地运行环境要求

  • 利用 Ollama 本地部署 Llama3

  • 利用 Ollama 本地部署 Llama3 中文微调版

  • 在 Lobechat 中使用 Llama3

2

简介

2.1

什么是 Llama3?

Lllma3 是 META 公司发布的开源语言大模型,与 chatGPT 类似,它可以完成一系列诸如对话,翻译,上下文理解等等复杂任务,你可以把它理解为一个免费,可以部署在你的电脑无须联网就可以使用的 AI 助手。

2.2

什么是 Ollama?

Ollama 是一个支持在本地运行大语言模型的工具,兼容 Windows 和 MacOS 操作系统。使用 Ollama,您仅需一行命令即可下载并启动模型。它简单方便使用,在本教程中我们使用 Ollama 来启动我们下载的 Lllama3 大模型。你可以把它理解为大语言模型的启动器。

2.3

什么是 Lobechat?

尽管在下载 Llama3 和 Ollama 后我们已经可以任意的使用模型,但为了更加方便的使用和体验我们可以使用 Lobechat 来部署我们的大语言模型。它拥有精美的 UI 设计 和可扩展的插件等等优点方便我们使用。

3

安装准备

Lllama3 有 8B 和 70B 两个版本,70B 拥有 700 亿个参数,需要强大的硬件支持,我们下载使用的是 Llama 3 8B,它拥有 80 亿个参数,相对来说轻量级是一个更加实用的选择。使用它我们需要:

  1. 良好的网络环境

  2. GPU 最好有 8GB 及以上

  3. 磁盘空间最好有 10G 以上, Llama3 8B 版本需要 5G 空间,中文微调版需要至少 8G 空间

4

利用 Ollama 本地部署 Llama3

4.1

Windows系统下载 Ollama

打开下面的网站,下载 Ollama 并双击安装。

由于 Ollama 的默认参数配置,启动时设置了仅本地访问,所以跨域访问以及端口监听需要进行额外的环境变量设置 OLLAMA_ORIGINS。

  1. 首先通过 Windows 任务栏点击 Ollama 退出程序。

  2. 从控制面板编辑系统环境变量。

  3. 为您的用户账户编辑或新建 Ollama 的环境变量 OLLAMA_ORIGINS,值设为 * 。

  4. 点击 OK/应用保存后重启系统。

  5. 重新运行 Ollama。

配置好后我们打开我的电脑,并在点击框输入 CMD,回车确定后输入命令:

ollama run llama3

这条命令的作用是检查目录下是否有该模型,没有会自动下载,下载好后自动运行该模型。

下载完成后我们已经可以开始使用了。

5

利用 Ollama 本地部署 Llama3 中文微调版

Llama3 中文微调版是在原版模型上进行了大量中文数据进行增量预训练,更加适合国人使用。在本教程中使用 ymcui 开发的中文微调版本,相对于其他版本,它拥有非常详细的文档供指引,参考和学习。项目地址:

https://github.com/ymcui/Chinese-LLaMA-Alpaca-3?tab=readme-ov-file 

首先,我们输入下面的网址下载模型。

https://huggingface.co/hfl/llama-3-chinese-8b-instruct-gguf/tree/main

下载好后放入你自己创建的文件夹中,下面做演示(我自己下载的F16版本,请下载q8_0版本,它在大小和模型表现中做到了比较好的平衡。)

接下来在文本编辑器中编写 Modelfile 文件,其内容如下:

FROM /your-path-to-ggml/ggml-model-q8_0.gguf``TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>``   ``{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>``   ``{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>``   ``{{ .Response }}<|eot_id|>"""``SYSTEM """"""``PARAMETER num_keep 24``PARAMETER stop <|start_header_id|>``PARAMETER stop <|end_header_id|>``PARAMETER stop <|eot_id|>``PARAMETER stop assistant``PARAMETER stop Assistant

请注意 FROM 定义 GGUF 文件的路径,比如我的 GGUF 文件放在 Models 文件下,路径就改为

FROM /Models/ggml-model-f16.gguf

如果你没有其他的文本编辑器可以打开记事本复制输入后保存,然后在重命名中删除文件后缀 txt。

命令行中运行以下命令,创建一个名为 llama3-zh-inst(名字可自定义)的模型实例,加载 Modelfile 配置:

ollama create llama3-zh-inst -f Modelfile

创建过程输出日志如;

transferring model data``creating model layer``creating template layer``creating system layer``creating parameters layer``creating config layer``using already created layer sha256:f2a44c6358e8e0a60337f8a1b31f55f457558eeefd4f344272e44b0e73a86a32``using already created layer sha256:8ab4849b038cf0abc5b1c9b8ee1443dca6b93a045c2272180d985126eb40bf6f``writing layer sha256:b821abf159071cfc90f0941b5ca7ef721f229cfcfadcf95b5c58d0ceb3e773c7``writing layer sha256:dc4ec177268acc3382fc6c3a395e577bf13e9e0340dd313a75f62df95c48bc1d``writing manifest``success

输入以下命令进入聊天程序,已经可以愉快的使用啦。

ollama run llama3-zh-inst

6

在 Lobechat 中使用 Llama3

我们运行 Ollama 后, 打开 Lobechat 网站注册,然后打开会话设置。

网址:

https://chat.lobehub.com/welcom

配置好我们的对话机器人后就可以使用了。测试:

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

Llama3是一种基于M6的预训练语言模型,通常用于文本生成、问答等自然语言处理任务。它的部署流程一般包括以下几个步骤: 1. **下载模型**:首先需要从Hugging Face的模型库或其他提供者处下载预训练的Llama3模型。你可以使用`transformers`库的`AutoModelForCausalLM`类加载模型。 ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "allenai/llama3-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` 2. **环境配置**:确保你的Python环境中已经安装了必要的依赖,如`torch`、`transformers`库以及GPU(如果模型是GPU加速的)。 3. **微调(Fine-tuning)**:如果你有特定的任务数据,可以对模型进行微调。这涉及到将模型放在一个适合的训练循环中,通过输入任务相关的数据并调整模型的权重,使其适应新的上下文。例如,对于序列标注任务,可以使用`Trainer`类: ```python from transformers import Trainer, TrainingArguments # 准备训练数据 train_dataloader = ... # 加载训练数据集 validation_dataloader = ... # 加载验证数据集 training_args = TrainingArguments(..., per_device_train_batch_size=4, ...) trainer = Trainer(model=model, args=training_args, train_dataset=train_dataloader, eval_dataset=validation_dataloader) # 微调 trainer.train() ``` 4. **部署**:完成微调后,可以将模型保存到磁盘以便后续使用。然后,在生产环境中,加载模型并调用其`generate()`或`predict()`方法来处理新的文本请求。 请注意,由于Llama3是一个较大的模型,它可能会消耗大量的计算资源,并且微调过程可能需要较长的时间。另外,模型部署通常会涉及服务器、API设计、性能优化等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值