读完需要5分钟,速读仅需 1 分钟
1
目录
简介
Llama3 介绍和优点
Ollama 介绍
Lobechat 介绍
安装准备
本地运行环境要求
利用 Ollama 本地部署 Llama3
利用 Ollama 本地部署 Llama3 中文微调版
在 Lobechat 中使用 Llama3
2
简介
2.1
什么是 Llama3?
Lllma3 是 META 公司发布的开源语言大模型,与 chatGPT 类似,它可以完成一系列诸如对话,翻译,上下文理解等等复杂任务,你可以把它理解为一个免费,可以部署在你的电脑无须联网就可以使用的 AI 助手。
2.2
什么是 Ollama?
Ollama 是一个支持在本地运行大语言模型的工具,兼容 Windows 和 MacOS 操作系统。使用 Ollama,您仅需一行命令即可下载并启动模型。它简单方便使用,在本教程中我们使用 Ollama 来启动我们下载的 Lllama3 大模型。你可以把它理解为大语言模型的启动器。
2.3
什么是 Lobechat?
尽管在下载 Llama3 和 Ollama 后我们已经可以任意的使用模型,但为了更加方便的使用和体验我们可以使用 Lobechat 来部署我们的大语言模型。它拥有精美的 UI 设计 和可扩展的插件等等优点方便我们使用。
3
安装准备
Lllama3 有 8B 和 70B 两个版本,70B 拥有 700 亿个参数,需要强大的硬件支持,我们下载使用的是 Llama 3 8B,它拥有 80 亿个参数,相对来说轻量级是一个更加实用的选择。使用它我们需要:
良好的网络环境
GPU 最好有 8GB 及以上
磁盘空间最好有 10G 以上, Llama3 8B 版本需要 5G 空间,中文微调版需要至少 8G 空间
4
利用 Ollama 本地部署 Llama3
4.1
Windows系统下载 Ollama
打开下面的网站,下载 Ollama 并双击安装。
由于 Ollama 的默认参数配置,启动时设置了仅本地访问,所以跨域访问以及端口监听需要进行额外的环境变量设置 OLLAMA_ORIGINS。
首先通过 Windows 任务栏点击 Ollama 退出程序。
从控制面板编辑系统环境变量。
为您的用户账户编辑或新建 Ollama 的环境变量 OLLAMA_ORIGINS,值设为 * 。
点击 OK/应用保存后重启系统。
重新运行 Ollama。
配置好后我们打开我的电脑,并在点击框输入 CMD,回车确定后输入命令:
ollama run llama3
这条命令的作用是检查目录下是否有该模型,没有会自动下载,下载好后自动运行该模型。
下载完成后我们已经可以开始使用了。
5
利用 Ollama 本地部署 Llama3 中文微调版
Llama3 中文微调版是在原版模型上进行了大量中文数据进行增量预训练,更加适合国人使用。在本教程中使用 ymcui 开发的中文微调版本,相对于其他版本,它拥有非常详细的文档供指引,参考和学习。项目地址:
https://github.com/ymcui/Chinese-LLaMA-Alpaca-3?tab=readme-ov-file
首先,我们输入下面的网址下载模型。
https://huggingface.co/hfl/llama-3-chinese-8b-instruct-gguf/tree/main
下载好后放入你自己创建的文件夹中,下面做演示(我自己下载的F16版本,请下载q8_0版本,它在大小和模型表现中做到了比较好的平衡。)
接下来在文本编辑器中编写 Modelfile 文件,其内容如下:
FROM /your-path-to-ggml/ggml-model-q8_0.gguf``TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>`` ``{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>`` ``{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>`` ``{{ .Response }}<|eot_id|>"""``SYSTEM """"""``PARAMETER num_keep 24``PARAMETER stop <|start_header_id|>``PARAMETER stop <|end_header_id|>``PARAMETER stop <|eot_id|>``PARAMETER stop assistant``PARAMETER stop Assistant
请注意 FROM 定义 GGUF 文件的路径,比如我的 GGUF 文件放在 Models 文件下,路径就改为
FROM /Models/ggml-model-f16.gguf
如果你没有其他的文本编辑器可以打开记事本复制输入后保存,然后在重命名中删除文件后缀 txt。
命令行中运行以下命令,创建一个名为 llama3-zh-inst(名字可自定义)的模型实例,加载 Modelfile 配置:
ollama create llama3-zh-inst -f Modelfile
创建过程输出日志如;
transferring model data``creating model layer``creating template layer``creating system layer``creating parameters layer``creating config layer``using already created layer sha256:f2a44c6358e8e0a60337f8a1b31f55f457558eeefd4f344272e44b0e73a86a32``using already created layer sha256:8ab4849b038cf0abc5b1c9b8ee1443dca6b93a045c2272180d985126eb40bf6f``writing layer sha256:b821abf159071cfc90f0941b5ca7ef721f229cfcfadcf95b5c58d0ceb3e773c7``writing layer sha256:dc4ec177268acc3382fc6c3a395e577bf13e9e0340dd313a75f62df95c48bc1d``writing manifest``success
输入以下命令进入聊天程序,已经可以愉快的使用啦。
ollama run llama3-zh-inst
6
在 Lobechat 中使用 Llama3
我们运行 Ollama 后, 打开 Lobechat 网站注册,然后打开会话设置。
网址:
https://chat.lobehub.com/welcom
配置好我们的对话机器人后就可以使用了。测试:
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓