随着,ChatGPT 迅速爆火,引发了大模型的时代变革。然而对于普通大众来说,进行大模型的预训练或者全量微调遥不可及。由此,催生了各种参数高效微调技术,让科研人员或者普通开发者有机会尝试微调大模型。
因此,该技术值得我们进行深入分析其背后的机理,之前分享了大模型参数高效微调技术原理综述的文章。下面给大家分享大模型参数高效微调技术实战系列文章,该系列共六篇文章,相关代码均放置在GitHub:llm-action。
- 大模型参数高效微调技术实战(一)-PEFT概述及环境搭建
- 大模型参数高效微调技术实战(二)-Prompt Tuning
- 大模型参数高效微调技术实战(三)-P-Tuning
- 大模型参数高效微调技术实战(四)-Prefix Tuning
- 大模型参数高效微调技术实战(五)-LoRA
- 大模型参数高效微调技术实战(六)-IA3
本文为大模型参数高效微调技术实战的第二篇。
Prompt Tuning 简述
Prompt Tuning(论文:The Power of Scale for Parameter-Efficient Prompt Tuning),该方法可以看作是 Prefix Tuning 的简化版本,它给每个任务定义了自己的Prompt,然后拼接到数据上作为输入,但只在输入层加入prompt tokens,并且不需要加入 MLP 进行调整来解决难训练的问题。
Prompt Tuning 微调实战
为了不影响阅读体验,详细的代码放置在GitHub:llm-action 项目中 peft_prompt_tuning_clm.ipynb文件,这里仅列出关键步骤。
第一步,引进必要的库,如:Prompt Tuning 配置类 PromptTuningConfig
。
from peft import get_peft_config, get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType, PeftType
第二步,创建 Prompt Tuning 微调方法对应的配置。
peft_config = PromptTuningConfig( task_type=TaskType.CAUSAL_LM, prompt_tuning_init=PromptTuningInit.TEXT, num_virtual_tokens=8, prompt_tuning_init_text="Classify if the tweet is a complaint or not:", tokenizer_name_or_path=model_name_or_path, )
参数说明:
- prompt_tuning_init:提示嵌入的初始化方法。PEFT支持文本(TEXT)和随机(RANDOM)初始化。在原理篇中提到过 Prompt token 的初始化方法和长度对于模型性能有影响。与随机初始化和使用样本词汇表初始化相比,Prompt Tuning 采用类标签初始化模型的效果更好。不过随着模型参数规模的提升,这种gap最终会消失。因此,如果需要使用类标签和样本词汇表初始化需指定为TEXT。
- prompt_tuning_init_text:用于初始化提示嵌入的文本,在使用文本(TEXT)初始化方法时使用。
- task_type:指定任务类型。如:条件生成任务(SEQ_2_SEQ_LM),因果语言建模(CAUSAL_LM)等。
- num_virtual_tokens:指定虚拟Token数。在原理篇中,提到过提示虚拟 Token 的长度在20左右时的表现已经不错(超过20之后,提升Prompt token长度,对模型的性能提升不明显了);同样的,这个gap也会随着模型参数规模的提升而减小(即对于超大规模模型而言,即使提示虚拟 Token 长度很短,对性能也不会有太大的影响)。
第三步,通过调用 get_peft_model
方法包装基础的 Transformer 模型。
model = AutoModelForCausalLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters()
通过 print_trainable_parameters 方法可以查看可训练参数的数量(仅为8,192)以及占比(仅为0.00146%)。
trainable params: 8,192 || all params: 559,222,784 || trainable%: 0.0014648902430985358
Prompt Tuning 模型类结构如下所示:
PeftModelForCausalLM( (base_model): BloomForCausalLM( (transformer): BloomModel( (word_embeddings): Embedding(250880, 1024) (word_embeddings_layernorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (h): ModuleList( ... ) (ln_f): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) (lm_head): Linear(in_features=1024, out_features=250880, bias=False) ) (prompt_encoder): ModuleDict( (default): PromptEmbedding( (embedding): Embedding(8, 1024) ) ) (word_embeddings): Embedding(250880, 1024) )
从模型类结构可以看到,Prompt Tuning 只在输入层加入 prompt virtual tokens,其他地方均没有变化,具体可查看 PromptEmbedding 的源码。
class PromptEmbedding(torch.nn.Module): def __init__(self, config, word_embeddings): super().__init__() total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules # 初始化 embedding 层 self.embedding = torch.nn.Embedding(total_virtual_tokens, config.token_dim) # 如果使用文本进行初始化,执行如下逻辑,PromptTuningConfig 配置类需要传入初始化文本。 if config.prompt_tuning_init == PromptTuningInit.TEXT: from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name_or_path) init_text = config.prompt_tuning_init_text init_token_ids = tokenizer(init_text)["input_ids"] # Trim or iterate until num_text_tokens matches total_virtual_tokens num_text_tokens = len(init_token_ids) if num_text_tokens > total_virtual_tokens: init_token_ids = init_token_ids[:total_virtual_tokens] elif num_text_tokens < total_virtual_tokens: num_reps = math.ceil(total_virtual_tokens / num_text_tokens) init_token_ids = init_token_ids * num_reps init_token_ids = init_token_ids[:total_virtual_tokens] word_embedding_weights = word_embeddings(torch.LongTensor(init_token_ids)).detach().clone() word_embedding_weights = word_embedding_weights.to(torch.float32) # 初始化embedding层的权重 self.embedding.weight = torch.nn.Parameter(word_embedding_weights) def forward(self, indices): # Just get embeddings prompt_embeddings = self.embedding(indices) return prompt_embeddings
第四步,模型训练的其余部分均无需更改,当模型训练完成之后,保存高效微调部分的模型权重以供模型推理即可。
peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" model.save_pretrained(peft_model_id)
输出的模型权重文件如下所示:
/data/nfs/llm/model/bloomz-560m_PROMPT_TUNING_CAUSAL_LM ├── [ 500] adapter_config.json ├── [ 33K] adapter_model.bin └── [ 111] README.md 0 directories, 3 files
注意:这里只会保存经过训练的增量 PEFT 权重。其中,adapter_config.json
为 Prompt Tuning 配置文件;adapter_model.bin
为 Prompt Tuning 权重文件。
第五步,加载微调后的权重文件进行推理。
from peft import PeftModel, PeftConfig peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" # 加载PEFT配置 config = PeftConfig.from_pretrained(peft_model_id) # 加载基础模型 model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) # 加载PEFT模型 model = PeftModel.from_pretrained(model, peft_model_id) # Tokenizer编码 inputs = tokenizer(f'{text_column} : {dataset["test"][i]["Tweet text"]} Label : ', return_tensors="pt") # 模型推理 outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3 ) # Tokenizer 解码 print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
至此,我们完成了Prompt Tuning的训练及推理。
结语
本文对 Prompt Tuning 的基本原理进行了简述;同时,讲解了使用 Prompt Tuning 技术进行模型训练及推理。下文将对 P-Tuning 微调技术进行实战讲解。