题目

思路
这是道区间动态规划的题目,不妨假设最后一次合并时,仅剩a,b两堆,暂不去考虑a,b两堆由谁合并而来,以最大为例,可以肯定的是,a堆合并的花费一定是该区间最大的,b也是其区间最大的,不然会有更优的方案,同时,a也是由两堆合并而成,这两堆也是最大的,如此分析,直到剩两个合并,此时花费一定,可以以此类推找到最终答案,即我们缺一种方法来实现我们的思路,这时候,就可以用上区间动态规划了,同时,这题是环状的,我们可以发现任意顺序合成一堆时总有一处使环断开,我们枚举所有断开成链的情况,最后取最优答案就行了
区间动态规划
我们创建一个二维数组,其两个下标分别代表开始和结束,如arr[1][3]表示1-3合成一堆花费的最大值,那么arr[1][4]就是arr[1][1]+arr[2][4] , arr[1][2]+arr[3][4] , arr[1][3]+arr[4][4]中的最大值,如此,便确定了我们的遍历顺序是由下往上的,同时注意在arr[x][x]的位置,没发生合并,因此其花费应设为0

AC代码
#include <iostream>
using namespace std;
int arr[205]={0};
int main()
{
int n;scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",arr+i);
arr[i+n]=arr[i];
}
//最小
int ans=999999;
for(int s=1;s<=n;s++)//破环
{
int dp[105][105]={0};
for(int i=0;i<=n;i++)
for(int j=0;j<=n;j++)
if(i!=j)
dp[i][j]=999999;//求最小应让没填入的尽量大
int w[105]={0};
for(int i=1;i<=n;i++)
{
w[i]=arr[s+i-1]+w[i-1];//重量前缀和
}
for(int i=n;i>=1;i--)//开始dp
for(int j=i+1;j<=n;j++)
for(int k=i;k<j;k++)
dp[i][j]=min(dp[i][j],dp[i][k]+dp[1+k][j]+w[j]-w[i-1]);
ans=min(ans,dp[1][n]);
}
printf("%d\n",ans);
//最大
int res=-1;
for(int s=1;s<=n;s++)
{
int dp[105][105]={0};
int w[105]={0};
for(int i=1;i<=n;i++)
{
w[i]=arr[s+i-1]+w[i-1];
}
for(int i=n;i>=1;i--)
{
for(int j=i+1;j<=n;j++)
{
for(int k=i;k<j;k++)
{
dp[i][j]=max(dp[i][j],dp[i][k]+dp[1+k][j]+w[j]-w[i-1]);
}
}
}
res=max(res,dp[1][n]);
}
printf("%d",res);
return 0;
}