6 - 二重积分

6 - 二重积分

一、二重积分的基本分析

1. 积分定限

利用数形结合的方式,如果是 d x dx dx ,则在积分区域画一条平行于 x 轴的线, d y dy dy 则画一条平行于 y 轴的线;极坐标系看图确定 d θ d\theta dθ 从多少弧度积分到多少弧度,然后过原点画一条角度不断变化的射线,去确定 d r dr dr 的上下限

2. 积分比大小

  1. 积分之间比大小,有时可以通过比较被积函数的大小来间接比较积分的大小

  2. 分析原函数的正负边界,参考积分区域,也可以用于部分特殊的比大小,例如:

∬ D ( x 2 + y 2 − 4 ) d x d y \begin{aligned} \iint_D(x^2+y^2-4)dxdy \end{aligned} D(x2+y24)dxdy

在半径为 2 的圆以内的区域,被积函数值恒大于 0 ,以外的区域,被积函数值恒小于 0 ;所以如 D 1 = { ( x , y ) ∣ x 2 + y 2 ≤ 4 } D_1=\{(x,y)|x^2+y^2\leq4\} D1={(x,y)x2+y24} D 2 = { ( x , y ) ∣ x 2 + y 2 ≤ 8 } D_2=\{(x,y)|x^2+y^2\leq8\} D2={(x,y)x2+y28} ,在 D 1 D_1 D1 上积分值就大于在 D 2 D_2 D2 上的积分值

二、二重积分的运算技巧

1. 对称性

1)坐标轴对称

当积分区域关于 x 、y 轴对称时,可以考察被积函数是否是关于 x 或 y 的 奇/偶函数,并可以借此简化计算

有时也可以通过 割补积分区域 来凑出一部份区域的对称性,并以此简化计算

【注】 判断是否对称的时候建议使用奇偶性定义

【注】 有些函数隐含了奇偶性条件,如 f ( x 2 ) f(x^2) f(x2) 隐含了它是个偶函数

2)轮换对称性
轮换对称性的产生

x、y对调后,积分区域不变,就存在轮换对称性

  1. 将所有的 y 和 x 互换,由积分的形式不变性,积分的值不会发生改变
  2. 看所有的 y 和 x 互换后,二重积分的几何意义:积分区域关于 y = x y=x y=x 对称
  3. 如果积分区域在关于 y = x y=x y=x 对称后,积分区域不变,则称该二重积分具有 轮换对称性
  4. 即便积分区域在对称后变化了,有时也可以借此创造 割补法 的使用场景简化计算
轮换对称性应用举例

1. 凑 x 2 + y 2 x^2+y^2 x2+y2

利用轮换对称性构造积分值与原函数相同的新积分,相加后在被积函数处凑出 x 2 + y 2 x^2+y^2 x2+y2 以便于转化成极坐标运算,例如:
D = { ( x , y ) ∣ t 2 ≤ x 2 + y 2 ≤ 4 t 2 } ( t > 0 ) D=\{(x,y)|t^2\leq x^2+y^2\leq 4t^2\}(t>0) D={(x,y)t2x2+y24t2}(t>0)

∬ D ( 2 x 2 + 1 ) f ( x 2 + y 2 ) x 2 + y 2 + 1 d x d y = ∬ D ( 2 y 2 + 1 ) f ( x 2 + y 2 ) x 2 + y 2 + 1 d x d y = 1 2 ∬ D ( 2 x 2 + 2 y 2 + 2 ) f ( x 2 + y 2 ) x 2 + y 2 + 1 d x d y ⋯ ⋯  化为极坐标继续运算即可 \begin{aligned} \iint_D \frac{(2x^2+1)f(x^2+y^2)}{x^2+y^2+1}dxdy&=\iint_D \frac{(2y^2+1)f(x^2+y^2)}{x^2+y^2+1}dxdy \\ &=\frac12\iint_D\frac{(2x^2+2y^2+2)f(x^2+y^2)}{x^2+y^2+1}dxdy \\ &\cdots\cdots \ \text{化为极坐标继续运算即可} \end{aligned} Dx2+y2+1(2x2+1)f(x2+y2)dxdy=Dx2+y2+1(2y2+1)f(x2+y2)dxdy=21Dx2+y2+1(2x2+2y2+2)f(x2+y2)dxdy⋯⋯ 化为极坐标继续运算即可

​ 此类情况,积分区间本身关于 y = x y=x y=x 对称,然后将被积函数中的所有 x 和 y互换,发现积分值与原函数一样

2. 割补法

通过割补法调整积分区域来简化二重积分的计算

3. 利用几何意义

对于一些特殊的二重积分形式,尤其是被积函数跟圆和椭圆相关的时候,可以参照圆和椭圆的面积直接得出积分值。
例如
I = ∫ 0 1 d x ∫ 0 e x e 2 x − y 2 d y I=\int_0^1dx\int_0^{e^x}\sqrt{e^{2x}-y^2}dy I=01dx0exe2xy2 dy

第一象限圆面积的一般积分形式:
圆的方程: x = r 2 − y 2 S = ∫ 0 r r 2 − y 2 d y 圆的方程:x=\sqrt{r^2-y^2} \\ S=\int_0^{r}\sqrt{r^2-y^2}dy 圆的方程:x=r2y2 S=0rr2y2 dy

所以 ∫ 0 e x e 2 x − y 2 d y \int_0^{e^x}\sqrt{e^{2x}-y^2}dy 0exe2xy2 dy 可以视为半径为 e x e^x ex 的圆面积的 1 4 \frac14 41

所以 可以直接得到 ∫ 0 e x e 2 x − y 2 d y = π 4 ( e x ) 2 \int_0^{e^x}\sqrt{e^{2x}-y^2}dy = \frac{\pi}{4}(e^x)^2 0exe2xy2 dy=4π(ex)2

所以 有:
I = π 4 ∫ 0 1 e 2 x d x = π 8 ( e 2 − 1 ) I=\frac\pi4\int_0^1e^{2x}dx=\frac\pi8(e^2-1) I=4π01e2xdx=8π(e21)
【注】 椭圆面积为 S = π a b S=\pi ab S=πab

4. 交换积分次序

没思路的时候可以尝试 交换积分次序 ,也许会破局

5. 极-直坐标变换

1)直线作为积分区域的边界,依旧可能便于使用极坐标系积分

一些以直线为积分区域边界的二重积分,转化成极坐标系依旧便于计算

尤其是以 y = k x y=kx y=kx 为边界的积分区域, d θ d\theta dθ 直接以 a r c t a n k arctank arctank 为边界

2)平移积分区间

对于积分区间是如圆心不在原点的圆,可以考虑做类似下面的处理:
积分区域: D = { ( x , y ) ∣ ( x − 1 ) 2 + y 2 ≤ 4 } { x − 1 = r c o s θ y = r s i n θ 积分区域:D=\{(x,y)|(x-1)^2+y^2\leq4\} \\ \begin{cases} x-1&=rcos\theta \\ \\ y&=rsin\theta \end{cases} 积分区域:D={(x,y)(x1)2+y24} x1y=rcosθ=rsinθ

三、二重积分几何应用

1. 求形心

y ‾ = ∬ D y   d σ S = ∬ D y   d x d y ∬ D d x d y \overline y=\frac{\iint_D y\ d\sigma}{S}=\frac{\iint_D y\ dxdy}{\iint_D dxdy} y=SDy dσ=DdxdyDy dxdy

对于一些对称图形和对称性,也可以直接利用几何性质判断形心的位置

2. 求体积

对于求一个物体的体积,可以将其 z 方向的高度视为 面密度 ,然后转化为普通的二重积分(面积分)进行求解

如求球( x 2 + y 2 + z 2 ≤ 4 x^2+y^2+z^2\leq4 x2+y2+z24)体积:
V = 8 ∬ D 4 − x 2 − y 2 d σ V=8\iint_D\sqrt{4-x^2-y^2}d\sigma V=8D4x2y2 dσ

四、便于积分的场景

∫ s e c x t a n x   d x = s e c x ∫ s e c 2 x   d x = t a n x ∫ s e c 4 x   d x = ∫ s e c 2 ( 1 + t a n 2 x )   d x = ∫ 1 + t a n 2 x   d ( t a n x ) ∫ s e c 2 x t a n x   d x = ∫ t a n x   d ( t a n x ) \begin{aligned} &\int secxtanx\ dx=secx \\ &\int sec^2x\ dx=tanx \\ &\int sec^4x\ dx=\int sec^2(1+tan^2x)\ dx=\int1+tan^2x\ d(tanx) \\ &\int sec^2xtanx\ dx=\int tanx\ d(tanx) \\ \end{aligned} secxtanx dx=secxsec2x dx=tanxsec4x dx=sec2(1+tan2x) dx=1+tan2x d(tanx)sec2xtanx dx=tanx d(tanx)

以上积分常在 极-直坐标变换 时出现

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值