李宏毅2019机器学习课程笔记00:机器学习的下一步

机器学习的下一步

在实际中应用机器学习技术,需要面对和解决的难题。

01. 异常检测 Anomaly Detection

机器能不能知道“我不知道”?

例如,对于一个将动物图片进行分类的模型,如果输入一张动漫人物的图片,模型是否会输出“我不知道”。

02. 可解释AI Explainable AI

机器能否说出为什么“我知道”?

03. 对抗攻击 Adversarial Attack

如何防止机器发生错觉?

04. 终身学习 Life-long Learning

人是终身学习的,但今天我们一般只让一个模型学习一个任务,这导致:(1)模型的数量无限增长,(2)之前学到的技能对之后的学习没有帮助。

终身学习(Life-long Learning) 研究如何解决同一模型在学习不同任务时存在的存在灾难性遗忘(catastrophic forgetting)问题。

05. 元学习 Meta-Learning

学习如何学习。
写出一个程序,这个程序能够写出具有学习能力程序。

06. 小样本学习 Few-shot Learning、零次学习 Zero-shot learning

根据很少的样本进行学习。

07. 强化学习 Reinforcement Learning

强化学习真的能用吗?

08. 网络压缩 Network Compression

把大的神经网络缩小,或者把神经网络的参数二元化。

09. 无监督域适应 Unsupervised Domain Adaptation

应对训练数据和测试数据的分布不同。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值