-
**用户交互和信息获取:**系统与用户交互,了解用户喜好、情感状态等信息,可以通过文本输入、语音输入或者其他方式。
-
**音乐数据获取:**从多个来源(如音乐平台API、数据库等)获取音乐数据,包括歌曲信息、歌手信息、歌曲时长、流派等。
-
**情感分析:**对用户输入的文本进行情感分析,了解用户当前的情感状态,例如是快乐、悲伤、兴奋还是沮丧等。
-
**音乐特征提取:**从音频文件中提取特征,如节奏、节拍、情感色彩、音调等。
-
**推荐算法:**根据用户的喜好和情感状态,利用机器学习算法或者深度学习模型,推荐最合适的音乐。
-
**音乐播放和控制:**将推荐的音乐播放给用户,支持播放控制功能,如暂停、跳过、调整音量等。
-
**用户反馈和改进:**根据用户的反馈和行为数据,不断改进推荐算法,提高推荐准确度和用户满意度。
import speech_recognition as sr
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
import spotipy
from spotipy.oauth2 import SpotifyClientCredentials
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import linear_kernel
import numpy as np
import pandas as pd
import pygame
import time
# 初始化NLTK
nltk.download('vader_lexicon')
nltk.download('punkt')
# 初始化Spotipy
spotify_client_id = 'your_client_id'
spotify_client_secret = 'your_client_secret'
sp = spotipy.Spotify(auth_manager=SpotifyClientCredentials(client_id=spotify_client_id,
client_secret=spotify_client_secret))
# 初始化Pygame
pygame.mixer.init()
def get_user_input():
# 从用户获取输入,可以是文本或语音
# 这里简化为从文本获取输入
user_input = input("请输入您的情感状态或者想听的音乐类型:")
return user_input
def sentiment_analysis(text):
# 对文本进行情感分析
sid = SentimentIntensityAnalyzer()
sentiment_score = sid.polarity_scores(text)
return sentiment_score['compound']
def search_music(query):
# 使用Spotify API搜索音乐
results = sp.search(q=query, limit=5)
return results['tracks']['items']
def play_music(track_uri):
# 使用Pygame播放音乐
pygame.mixer.music.load(track_uri)
pygame.mixer.music.play()
while pygame.mixer.music.get_busy():
time.sleep(1)
def main():
# 获取用户输入
user_input = get_user_input()
# 进行情感分析
sentiment_score = sentiment_analysis(user_input)
# 根据情感分析结果推荐音乐
if sentiment_score >= 0.5:
query = "happy"
elif sentiment_score <= -0.5:
query = "sad"
else:
query = "relaxing"
# 搜索音乐
tracks = search_music(query)
# 从搜索结果中选择一首音乐并播放
if len(tracks) > 0:
track_uri = tracks[0]['uri']
play_music(track_uri)
else:
print("未找到匹配的音乐!")
if __name__ == "__main__":
main()