闭区间是否存在一个开区间包含之

设 I 为闭区间。对于任给的 ϵ>0\epsilon > 0ϵ>0 ,是否存在开区间 I’ ,使得:

  1. I⊆I′I \subseteq I'II(即开区间 I’ 包含闭区间 I );
  2. I≤I′<I+ϵI \leq I' < I + \epsilonII<I+ϵ (即开区间 I’ 的长度严格大于闭区间 I 的长度,但不超过 I+ ϵ\epsilonϵ)。

问:这样的开区间 I’ 是否总是存在?

首先,明确几个基本概念:

  1. 闭区间 I :通常表示为 I = [a, b] ,其中 a ≤\leq b 。其长度为 I= b - a 。
  2. 开区间 I’ :通常表示为 ( I’ = (c, d) ),其中 c < d 。其长度为 I’= d - c 。
  3. 包含关系 I⊆\subseteqI’ :即 ( [a, b] ⊆\subseteq (c, d) ),意味着 c < a 且 b < d 。

我们需要证明或反驳:对于任意闭区间 I = [a, b] 和任意 \epsilon > 0 ,存在开区间 ( I’ = (c, d) ) 满足:

  1. ( [a, b] ⊆\subseteq (c, d) );
  2. ( b - a ≤\leq d - c < (b - a) + ϵ\epsilonϵ )。

构造性证明

步骤 1:构造包含 I 的开区间

为了确保 ( [a, b] ⊆\subseteq (c, d) ),我们需要:
• c < a (因为 a 是 I 的左端点,必须包含在 I’ 内);

• d > b (因为 b 是 I 的右端点,必须包含在 I’ 内)。

因此,可以设:[ c = a - δ1\delta_1δ1, d = b + δ2\delta_2δ2 ],其中 δ1\delta_1δ1, δ2\delta_2δ2 > 0 。这样:
[ I’ = (a - δ1\delta_1δ1, b + δ2\delta_2δ2) ]
显然满足 ( [a, b] ⊆\subseteq (a - δ1\delta_1δ1, b + δ2\delta_2δ2) )。

步骤 2:控制开区间 I’ 的长度

开区间 I’ 的长度为:
[ I’ = (b + δ2\delta_2δ2) - (a - δ1\delta_1δ1) = (b - a) +δ1\delta_1δ1 + δ2\delta_2δ2 = I+δ1\delta_1δ1 + δ2\delta_2δ2]

我们需要满足:
[ I ≤I′\leq I'I < I+ ϵ\epsilonϵ ]
即:
[ I ≤I\leq II + δ1\delta_1δ1 +δ2\delta_2δ2 < I+ ϵ\epsilonϵ ]
这简化为:
[ 0 ≤\leq δ1\delta_1δ1 + δ2\delta_2δ2 < ϵ\epsilonϵ ]

因为 δ1\delta_1δ1, δ2\delta_2δ2 > 0 ,所以 δ1\delta_1δ1 + δ2\delta_2δ2 > 0 自动满足。我们需要选择 δ1\delta_1δ1δ2\delta_2δ2 使得:
[ δ1+δ2<ϵ\delta_1 + \delta_2 < \epsilonδ1+δ2<ϵ ]

步骤 3:选择合适的 δ1\delta_1δ1δ2\delta_2δ2

为了满足 δ1+δ2<ϵ\delta_1 + \delta_2 < \epsilonδ1+δ2<ϵ ,可以选择:
δ1=ϵ2\delta_1 = \frac{\epsilon}{2}δ1=2ϵδ2=ϵ2\delta_2 = \frac{\epsilon}{2}δ2=2ϵ(或其他分配方式,只要和小于 \epsilon )。

这样:[ δ1+δ2=ϵ2+ϵ2=ϵ\delta_1 + \delta_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilonδ1+δ2=2ϵ+2ϵ=ϵ ]
但我们需要严格小于 ϵ\epsilonϵ ,因此可以调整:
δ1=ϵ3\delta_1 = \frac{\epsilon}{3}δ1=3ϵδ2=ϵ3\delta_2 = \frac{\epsilon}{3}δ2=3ϵ ,则 δ1+δ2=2ϵ3<ϵ\delta_1 + \delta_2 = \frac{2\epsilon}{3} < \epsilonδ1+δ2=32ϵ<ϵ

• 或者更一般地,选择 δ1=ϵ4\delta_1 = \frac{\epsilon}{4}δ1=4ϵδ2=ϵ4\delta_2 = \frac{\epsilon}{4}δ2=4ϵ ,则 δ1+δ2=ϵ2<ϵ\delta_1 + \delta_2 = \frac{\epsilon}{2} < \epsilonδ1+δ2=2ϵ<ϵ

具体构造:
选择 δ1=δ2=ϵ4\delta_1 = \delta_2 = \frac{\epsilon}{4}δ1=δ2=4ϵ ,则:
[ I′=(a−ϵ4,b+ϵ4)I' = \left(a - \frac{\epsilon}{4}, b + \frac{\epsilon}{4}\right)I=(a4ϵ,b+4ϵ) ]
其长度为:
[ I′=(b+ϵ4)−(a−ϵ4)=b−a+ϵ2=I+ϵ2I' = (b + \frac{\epsilon}{4}) - (a - \frac{\epsilon}{4}) = b - a + \frac{\epsilon}{2} = I+ \frac{\epsilon}{2}I=(b+4ϵ)(a4ϵ)=ba+2ϵ=I+2ϵ]
因为 ϵ2>0\frac{\epsilon}{2} > 02ϵ>0 ,所以 I’ > I

同时 ϵ2<ϵ\frac{\epsilon}{2} < \epsilon2ϵ<ϵ (因为 ϵ>0\epsilon > 0ϵ>0 ),所以 I′<I+ϵI' < I+ \epsilonI<I+ϵ

因此:
[ I<I′<I+ϵI < I' < I+ \epsilonI<I<I+ϵ ]
(注意:原问题写的是 I ≤I′\leq I'I,而实际上 I’ 严格大于 I
,因为 $ \delta_1, \delta_2 > 0$ )

验证

对于任意 ϵ>0\epsilon > 0ϵ>0 ,我们可以选择:
[ I′=(a−ϵ4,b+ϵ4)I' = \left(a - \frac{\epsilon}{4}, b + \frac{\epsilon}{4}\right)I=(a4ϵ,b+4ϵ)]
则:

  1. ( [a,b]⊆(a−ϵ4[a, b] \subseteq (a - \frac{\epsilon}{4}[a,b](a4ϵ, b+ϵ4)b + \frac{\epsilon}{4})b+4ϵ))(因为 a−ϵ4<aa - \frac{\epsilon}{4} < aa4ϵ<ab<b+ϵ4b < b + \frac{\epsilon}{4}b<b+4ϵ );
  2. I′=b−a+ϵ2=II' = b - a + \frac{\epsilon}{2} = II=ba+2ϵ=I+ ϵ2\frac{\epsilon}{2}2ϵ ;因为 ϵ2>0\frac{\epsilon}{2} > 02ϵ>0 ,所以 I’ > I ;因为 ϵ2<ϵ\frac{\epsilon}{2} < \epsilon2ϵ<ϵ ,所以 I’ < I
  • ϵ\epsilonϵ

因此:[ I<I′<I+ϵI < I' < I+ \epsilonI<I<I+ϵ ]
(满足 I \leq I’ 和 I′<I+ϵI' < I+ \epsilonI<I+ϵ

更一般的构造

实际上,可以更灵活地选择 δ1\delta_1δ1δ2\delta_2δ2
• 只要 δ1+δ2<ϵ\delta_1 + \delta_2 < \epsilonδ1+δ2<ϵ ,且 δ1\delta_1δ1, δ2>0\delta_2 > 0δ2>0 ,就可以构造:

[ I’ = (a - \delta_1, b + \delta_2) ]
其长度为:
[ I′=I+δ1+δ2I' = I+ \delta_1 + \delta_2I=I+δ1+δ2 ]
满足:
[ I<I′<I+ϵI < I' < I+ \epsilonI<I<I+ϵ ]

结论

结论成立。 对于任意闭区间 I = [a, b] 和任意 ϵ>0\epsilon > 0ϵ>0 ,存在开区间 ( I′=(a−δ1,b+δ2)I' = (a - \delta_1, b + \delta_2)I=(aδ1,b+δ2) )(其中 δ1\delta_1δ1, δ2>0\delta_2 > 0δ2>0δ1+δ2<ϵ\delta_1 + \delta_2 < \epsilonδ1+δ2<ϵ ),使得:

  1. I⊆I′I \subseteq I'II
  2. I≤I′<I+ϵI \leq I' < I + \epsilonII<I+ϵ (实际上 I’ > I 且 I’ < I+ ϵ\epsilonϵ )。

补充说明

• 如果允许 δ1\delta_1δ1δ2\delta_2δ2 为 0(即开区间可以退化为半开区间),则 I’ 可以等于 I ,但题目中 I’ 是开区间,因此必须 δ1\delta_1δ1, δ2>0\delta_2 > 0δ2>0 ,从而 I’ > I 。

• 原问题中的 I≤I′I \leq I'II 实际上是严格的 I′>II' > II>I
,因为开区间必须严格包含闭区间的端点。

• 通过适当选择 δ1\delta_1δ1δ2\delta_2δ2 ,可以确保 I’ 任意接近 I (即 I’ 可以无限接近于 I ,但严格大于 I
)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值