设 I 为闭区间。对于任给的 ϵ>0\epsilon > 0ϵ>0 ,是否存在开区间 I’ ,使得:
- I⊆I′I \subseteq I'I⊆I′(即开区间 I’ 包含闭区间 I );
- I≤I′<I+ϵI \leq I' < I + \epsilonI≤I′<I+ϵ (即开区间 I’ 的长度严格大于闭区间 I 的长度,但不超过 I+ ϵ\epsilonϵ)。
问:这样的开区间 I’ 是否总是存在?
首先,明确几个基本概念:
- 闭区间 I :通常表示为 I = [a, b] ,其中 a ≤\leq≤ b 。其长度为 I= b - a 。
- 开区间 I’ :通常表示为 ( I’ = (c, d) ),其中 c < d 。其长度为 I’= d - c 。
- 包含关系 I⊆\subseteq⊆I’ :即 ( [a, b] ⊆\subseteq⊆ (c, d) ),意味着 c < a 且 b < d 。
我们需要证明或反驳:对于任意闭区间 I = [a, b] 和任意 \epsilon > 0 ,存在开区间 ( I’ = (c, d) ) 满足:
- ( [a, b] ⊆\subseteq⊆ (c, d) );
- ( b - a ≤\leq≤ d - c < (b - a) + ϵ\epsilonϵ )。
构造性证明
步骤 1:构造包含 I 的开区间
为了确保 ( [a, b] ⊆\subseteq⊆ (c, d) ),我们需要:
• c < a (因为 a 是 I 的左端点,必须包含在 I’ 内);
• d > b (因为 b 是 I 的右端点,必须包含在 I’ 内)。
因此,可以设:[ c = a - δ1\delta_1δ1, d = b + δ2\delta_2δ2 ],其中 δ1\delta_1δ1, δ2\delta_2δ2 > 0 。这样:
[ I’ = (a - δ1\delta_1δ1, b + δ2\delta_2δ2) ]
显然满足 ( [a, b] ⊆\subseteq⊆ (a - δ1\delta_1δ1, b + δ2\delta_2δ2) )。
步骤 2:控制开区间 I’ 的长度
开区间 I’ 的长度为:
[ I’ = (b + δ2\delta_2δ2) - (a - δ1\delta_1δ1) = (b - a) +δ1\delta_1δ1 + δ2\delta_2δ2 = I+δ1\delta_1δ1 + δ2\delta_2δ2]
我们需要满足:
[ I ≤I′\leq I'≤I′ < I+ ϵ\epsilonϵ ]
即:
[ I ≤I\leq I≤I + δ1\delta_1δ1 +δ2\delta_2δ2 < I+ ϵ\epsilonϵ ]
这简化为:
[ 0 ≤\leq≤ δ1\delta_1δ1 + δ2\delta_2δ2 < ϵ\epsilonϵ ]
因为 δ1\delta_1δ1, δ2\delta_2δ2 > 0 ,所以 δ1\delta_1δ1 + δ2\delta_2δ2 > 0 自动满足。我们需要选择 δ1\delta_1δ1 和 δ2\delta_2δ2 使得:
[ δ1+δ2<ϵ\delta_1 + \delta_2 < \epsilonδ1+δ2<ϵ ]
步骤 3:选择合适的 δ1\delta_1δ1 和 δ2\delta_2δ2
为了满足 δ1+δ2<ϵ\delta_1 + \delta_2 < \epsilonδ1+δ2<ϵ ,可以选择:
• δ1=ϵ2\delta_1 = \frac{\epsilon}{2}δ1=2ϵ ,δ2=ϵ2\delta_2 = \frac{\epsilon}{2}δ2=2ϵ(或其他分配方式,只要和小于 \epsilon )。
这样:[ δ1+δ2=ϵ2+ϵ2=ϵ\delta_1 + \delta_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilonδ1+δ2=2ϵ+2ϵ=ϵ ]
但我们需要严格小于 ϵ\epsilonϵ ,因此可以调整:
• δ1=ϵ3\delta_1 = \frac{\epsilon}{3}δ1=3ϵ , δ2=ϵ3\delta_2 = \frac{\epsilon}{3}δ2=3ϵ ,则 δ1+δ2=2ϵ3<ϵ\delta_1 + \delta_2 = \frac{2\epsilon}{3} < \epsilonδ1+δ2=32ϵ<ϵ ;
• 或者更一般地,选择 δ1=ϵ4\delta_1 = \frac{\epsilon}{4}δ1=4ϵ , δ2=ϵ4\delta_2 = \frac{\epsilon}{4}δ2=4ϵ ,则 δ1+δ2=ϵ2<ϵ\delta_1 + \delta_2 = \frac{\epsilon}{2} < \epsilonδ1+δ2=2ϵ<ϵ 。
具体构造:
选择 δ1=δ2=ϵ4\delta_1 = \delta_2 = \frac{\epsilon}{4}δ1=δ2=4ϵ ,则:
[ I′=(a−ϵ4,b+ϵ4)I' = \left(a - \frac{\epsilon}{4}, b + \frac{\epsilon}{4}\right)I′=(a−4ϵ,b+4ϵ) ]
其长度为:
[ I′=(b+ϵ4)−(a−ϵ4)=b−a+ϵ2=I+ϵ2I' = (b + \frac{\epsilon}{4}) - (a - \frac{\epsilon}{4}) = b - a + \frac{\epsilon}{2} = I+ \frac{\epsilon}{2}I′=(b+4ϵ)−(a−4ϵ)=b−a+2ϵ=I+2ϵ]
因为 ϵ2>0\frac{\epsilon}{2} > 02ϵ>0 ,所以 I’ > I
;
同时 ϵ2<ϵ\frac{\epsilon}{2} < \epsilon2ϵ<ϵ (因为 ϵ>0\epsilon > 0ϵ>0 ),所以 I′<I+ϵI' < I+ \epsilonI′<I+ϵ 。
因此:
[ I<I′<I+ϵI < I' < I+ \epsilonI<I′<I+ϵ ]
(注意:原问题写的是 I ≤I′\leq I'≤I′,而实际上 I’ 严格大于 I
,因为 $ \delta_1, \delta_2 > 0$ )
验证
对于任意 ϵ>0\epsilon > 0ϵ>0 ,我们可以选择:
[ I′=(a−ϵ4,b+ϵ4)I' = \left(a - \frac{\epsilon}{4}, b + \frac{\epsilon}{4}\right)I′=(a−4ϵ,b+4ϵ)]
则:
- ( [a,b]⊆(a−ϵ4[a, b] \subseteq (a - \frac{\epsilon}{4}[a,b]⊆(a−4ϵ, b+ϵ4)b + \frac{\epsilon}{4})b+4ϵ))(因为 a−ϵ4<aa - \frac{\epsilon}{4} < aa−4ϵ<a 且 b<b+ϵ4b < b + \frac{\epsilon}{4}b<b+4ϵ );
- I′=b−a+ϵ2=II' = b - a + \frac{\epsilon}{2} = II′=b−a+2ϵ=I+ ϵ2\frac{\epsilon}{2}2ϵ ;因为 ϵ2>0\frac{\epsilon}{2} > 02ϵ>0 ,所以 I’ > I ;因为 ϵ2<ϵ\frac{\epsilon}{2} < \epsilon2ϵ<ϵ ,所以 I’ < I
- ϵ\epsilonϵ 。
因此:[ I<I′<I+ϵI < I' < I+ \epsilonI<I′<I+ϵ ]
(满足 I \leq I’ 和 I′<I+ϵI' < I+ \epsilonI′<I+ϵ )
更一般的构造
实际上,可以更灵活地选择 δ1\delta_1δ1 和 δ2\delta_2δ2 :
• 只要 δ1+δ2<ϵ\delta_1 + \delta_2 < \epsilonδ1+δ2<ϵ ,且 δ1\delta_1δ1, δ2>0\delta_2 > 0δ2>0 ,就可以构造:
[ I’ = (a - \delta_1, b + \delta_2) ]
其长度为:
[ I′=I+δ1+δ2I' = I+ \delta_1 + \delta_2I′=I+δ1+δ2 ]
满足:
[ I<I′<I+ϵI < I' < I+ \epsilonI<I′<I+ϵ ]
结论
结论成立。 对于任意闭区间 I = [a, b] 和任意 ϵ>0\epsilon > 0ϵ>0 ,存在开区间 ( I′=(a−δ1,b+δ2)I' = (a - \delta_1, b + \delta_2)I′=(a−δ1,b+δ2) )(其中 δ1\delta_1δ1, δ2>0\delta_2 > 0δ2>0 且 δ1+δ2<ϵ\delta_1 + \delta_2 < \epsilonδ1+δ2<ϵ ),使得:
- I⊆I′I \subseteq I'I⊆I′ ;
- I≤I′<I+ϵI \leq I' < I + \epsilonI≤I′<I+ϵ (实际上 I’ > I 且 I’ < I+ ϵ\epsilonϵ )。
补充说明
• 如果允许 δ1\delta_1δ1 或 δ2\delta_2δ2 为 0(即开区间可以退化为半开区间),则 I’ 可以等于 I ,但题目中 I’ 是开区间,因此必须 δ1\delta_1δ1, δ2>0\delta_2 > 0δ2>0 ,从而 I’ > I 。
• 原问题中的 I≤I′I \leq I'I≤I′ 实际上是严格的 I′>II' > II′>I
,因为开区间必须严格包含闭区间的端点。
• 通过适当选择 δ1\delta_1δ1 和 δ2\delta_2δ2 ,可以确保 I’ 任意接近 I (即 I’ 可以无限接近于 I ,但严格大于 I
)。