在实变函数(或一般拓扑学)中,给定一个集合
E⊆RnE \subseteq \mathbb{R}^nE⊆Rn(或更一般的拓扑空间),集合 E 的边界(boundary)与 E 的补集 EcE^cEc 的边界是否相等? 即,是否有 ∂E=∂Ec\partial E = \partial E^c∂E=∂Ec ?
基本概念回顾
首先,我们需要明确几个关键概念:
- 闭包(Closure):集合 E 的闭包 E‾\overline{E}E 是包含 E 的最小闭集,即 E 及其所有极限点的并集。
- 内部(Interior):集合 E 的内部 E∘E^\circE∘ 是包含于 E 的最大开集,即所有 E 的内点的集合。
- 边界(Boundary):集合 E 的边界 ∂E\partial E∂E 定义为:
∂E=E‾∖E∘=E‾∩Ec‾\partial E = \overline{E} \setminus E^\circ = \overline{E} \cap \overline{E^c}∂E=E∖E∘=E∩Ec
即,边界是 E 的闭包中不属于 E 内部的点,或者说同时属于 E 和其补集 EcE^cEc 的闭包的点。
边界与补集边界的关系
我们需要比较 ∂E\partial E∂E 和 ∂Ec\partial E^c∂Ec 。
根据边界的定义:
∂E=E‾∩Ec‾\partial E = \overline{E} \cap \overline{E^c}∂E=E∩Ec
∂Ec=Ec‾∩E‾\partial E^c = \overline{E^c} \cap \overline{E}∂Ec=Ec∩E
显然,集合的交集是可交换的,即
E‾∩Ec‾=Ec‾∩E‾\overline{E} \cap \overline{E^c} = \overline{E^c} \cap \overline{E}E∩Ec=Ec∩E ,因此:∂E=∂Ec\partial E = \partial E^c∂E=∂Ec
直观理解
从几何或直观上看:
• ∂E\partial E∂E 是那些“既不属于 E 的内部也不属于 EcE^cEc的内部”的点。换句话说,这些点的任何邻域都既包含 E 的点也包含 EcE^cEc 的点。
• ∂Ec\partial E^c∂Ec 是那些“既不属于 EcE^cEc 的内部也不属于 E 的内部”的点,即同样任何邻域都既包含 EcE^cEc 的点也包含 E 的点。
因此, ∂E\partial E∂E 和 ∂Ec\partial E^c∂Ec 描述的是同一组点:集合 E 和其补集 EcE^cEc 的“边缘”或“分界线”。
例子验证
让我们通过具体的例子来验证这一点。
例子 1: E 为开区间 (0, 1)(在 R\mathbb{R}R 中)
• E = (0, 1)
• Ec=(−∞,0]∪[1,+∞)E^c = (-\infty, 0] \cup [1, +\infty)Ec=(−∞,0]∪[1,+∞)
计算边界:
• E‾=[0,1]\overline{E} = [0, 1]E=[0,1] , E∘=(0,1)E^\circ = (0, 1)E∘=(0,1), 所以 ∂E=[0,1]∖(0,1)={0,1}\partial E = [0, 1] \setminus (0, 1) = \{0, 1\}∂E=[0,1]∖(0,1)={0,1}
• Ec‾=(−∞,0]∪[1,+∞)\overline{E^c} = (-\infty, 0] \cup [1, +\infty)Ec=(−∞,0]∪[1,+∞),
KaTeX parse error: Can't use function '\)' in math mode at position 45: …p (1, +\infty) \̲)̲
, 所以
∂Ec=Ec‾∖Ec∘={0,1}\partial E^c = \overline{E^c} \setminus E^{c\circ} = \{0, 1\}∂Ec=Ec∖Ec∘={0,1}
因此, ∂E=∂Ec={0,1}\partial E = \partial E^c = \{0, 1\}∂E=∂Ec={0,1} 。
例子 2: E 为闭区间 [0, 1] (在 R\mathbb{R}R 中)
• E = [0, 1]
• Ec=(−∞,0)∪(1,+∞)E^c = (-\infty, 0) \cup (1, +\infty)Ec=(−∞,0)∪(1,+∞)
计算边界:
• E‾=[0,1]\overline{E} = [0, 1]E=[0,1], E∘=(0,1)E^\circ = (0, 1)E∘=(0,1), 所以∂E=[0,1]∖(0,1)={0,1}\partial E = [0, 1] \setminus (0, 1) = \{0, 1\}∂E=[0,1]∖(0,1)={0,1}
• Ec‾=(−∞,0]∪[1,+∞)\overline{E^c} = (-\infty, 0] \cup [1, +\infty)Ec=(−∞,0]∪[1,+∞), Ec∘=(−∞,0)∪(1,+∞)E^{c\circ} = (-\infty, 0) \cup (1, +\infty)Ec∘=(−∞,0)∪(1,+∞), 所以 ∂Ec=Ec‾∖Ec∘={0,1}\partial E^c = \overline{E^c} \setminus E^{c\circ} = \{0, 1\}∂Ec=Ec∖Ec∘={0,1}
因此, ∂E=∂Ec={0,1}\partial E = \partial E^c = \{0, 1\}∂E=∂Ec={0,1} 。
例子 3: E 为康托尔集(Cantor set)
康托尔集 C 是一个著名的处处不连续的闭集,其补集 CcC^cCc 是开集的并。
• ∂C=C\partial C = C∂C=C (因为 C 的内部为空,闭包为自身)
• ∂Cc=∂C=C\partial C^c = \partial C = C∂Cc=∂C=C (因为 CcC^cCc 的边界也是 C )
因此,∂C=∂Cc\partial C = \partial C^c∂C=∂Cc 。
可能的误区
有时候,人们可能会误认为 ∂E\partial E∂E 和 ∂Ec\partial E^c∂Ec 是不同的,尤其是当 E 具有复杂的拓扑结构时。例如:
• 如果 E 是一个开集,可能会认为 \partial E 是其“边缘”,而 ∂Ec\partial E^c∂Ec 是其补集的“边缘”,看起来不同。
但事实上,无论 E 是开集、闭集还是既不开也不闭的集合, ∂E\partial E∂E 和 ∂Ec\partial E^c∂Ec 始终是相同的集合。
数学证明
为了更严谨地证明 ∂E=∂Ec\partial E = \partial E^c∂E=∂Ec,我们可以直接根据定义:
-
边界的定义:
∂E=E‾∩Ec‾\partial E = \overline{E} \cap \overline{E^c}∂E=E∩Ec
∂Ec=Ec‾∩E‾\partial E^c = \overline{E^c} \cap \overline{E}∂Ec=Ec∩E由于集合的交集是可交换的(即 A∩B=B∩AA \cap B = B \cap AA∩B=B∩A),因此:
∂E=∂Ec\partial E = \partial E^c∂E=∂Ec -
另一种表述:
• 边界点 x 满足: x 的任何邻域既包含 E 的点也包含 EcE^cEc 的点。• 这与 x 是 EcE^cEc 的边界点的定义完全相同(即 x 的任何邻域既包含 EcE^cEc 的点也包含 E 的点)。
• 因此, ∂E\partial E∂E 和 ∂Ec\partial E^c∂Ec 描述的是同一组点。
结论
在实变函数或一般拓扑学中,对于任意集合 E⊆RnE \subseteq \mathbb{R}^nE⊆Rn (或更一般的拓扑空间),集合 E 的边界 ∂E\partial E∂E 与其补集 EcE^cEc 的边界 ∂Ec\partial E^c∂Ec 是相等的。即:
∂E=∂Ec\partial E = \partial E^c∂E=∂Ec
这一结论可以通过定义直接验证,并通过具体例子(如开区间、闭区间、康托尔集等)得到支持。