【BZOJ】1013 球形空间生成器

该博客介绍了如何使用高斯消元法解决BZOJ问题1013,即球形空间生成器。通过建立数学模型,分析了如何根据圆心坐标和圆上两点的坐标,形成等式并进行求解。博主指出,尽管时间复杂度为O(n^3),但当n=100时,通过避免浮点误差,该方法仍然可行。
摘要由CSDN通过智能技术生成

分析

设圆心的坐标为 (r1,r2,...,rn)
A(a1,a2,...,an) 和点 B(b1,b2,...,bn) 在圆上。

则有
dist=(r1a1)2+...+(rnan)2=(r1b1)2+...+(rnbn)2
(r1a1)2+...+(rnan)2=(r1b1)2+...+(rnbn)2
ri22airi+ai2=ri22biri+bi2
(2bi2ai)ri=(bi2)(ai2)

一共有 n+1 个点,可以列出 n 个等式。
可以预处理出(ai2),每个等式用 O(n) 可求出。
用高斯消元即可解决。

时间复杂度: O(n3)
空间复杂度: O(n2)

所以数据出到 n=100 其实也是可以的,只要能避免浮点误差带来的太大影响。

代码

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;

const int N=15;
const double eps=1e-5;

int n; double x[N][N];
double a[N][N],sum[N],res[N];

void init(void)
{
    scanf("%d",&n);
    for (int i=1;i<=n+1;i++)
        for (int j=1;j<=n;j++)
            scanf("%lf",&x[i][j]);

    for (int i=1;i<=n+1;i++)
        for (int j=1;j<=n;j++)
            sum[i]+=x[i][j]*x[i][j];
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=n;j++)
            a[i][j]=x[i+1][j]-x[i][j];
        a[i][n+1]=(sum[i+1]-sum[i])/2;
    }
}

inline int cmp(double i,double j)
{
    if (fabs(i-j)<eps) return 0;
    return i<j?-1:1;
}

inline void swap(int i,int j)
{
    for (int k=1;k<=n+1;k++) a[i][k]+=a[j][k];
    for (int k=1;k<=n+1;k++) a[j][k]=a[i][k]-a[j][k];
    for (int k=1;k<=n+1;k++) a[i][k]-=a[j][k];
}

void gauss(void)
{
    double r;
    for (int i=1;i<=n;i++)
    {
        for (int j=i+1;j<=n;j++)
            if (!cmp(a[i][i],0)||cmp(abs(a[i][i]),abs(a[j][i]))>0) swap(i,j);
        for (int j=i+1;j<=n;j++)
            if (cmp(a[i][j],0))
            {
                r=a[j][i]/a[i][i];
                for (int k=i;k<=n+1;k++) a[j][k]-=a[i][k]*r;
            }
    }
    for (int i=n;i;i--)
    {
        for (int j=i+1;j<=n;j++) a[i][n+1]-=a[i][j]*res[j];
        res[i]=a[i][n+1]/a[i][i];
    }

    for (int i=1;i<n;i++) printf("%0.3lf ",res[i]);
    printf("%0.3lf\n",res[n]);
}

int main(void)
{   
    init();
    gauss();    

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值