分析
设圆心的坐标为
(r1,r2,...,rn)
,
点
A(a1,a2,...,an)
和点
B(b1,b2,...,bn)
在圆上。
则有
dist=(r1−a1)2+...+(rn−an)2−−−−−−−−−−−−−−−−−−−−−√=(r1−b1)2+...+(rn−bn)2−−−−−−−−−−−−−−−−−−−−√
∴(r1−a1)2+...+(rn−an)2=(r1−b1)2+...+(rn−bn)2
∴∑ri2−∑2airi+∑ai2=∑ri2−∑2biri+∑bi2
∴∑(2bi−2ai)ri=∑(bi2)−∑(ai2)
一共有
n+1
个点,可以列出
n
个等式。
可以预处理出
用高斯消元即可解决。
时间复杂度:
O(n3)
空间复杂度:
O(n2)
所以数据出到 n=100 其实也是可以的,只要能避免浮点误差带来的太大影响。
代码
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N=15;
const double eps=1e-5;
int n; double x[N][N];
double a[N][N],sum[N],res[N];
void init(void)
{
scanf("%d",&n);
for (int i=1;i<=n+1;i++)
for (int j=1;j<=n;j++)
scanf("%lf",&x[i][j]);
for (int i=1;i<=n+1;i++)
for (int j=1;j<=n;j++)
sum[i]+=x[i][j]*x[i][j];
for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++)
a[i][j]=x[i+1][j]-x[i][j];
a[i][n+1]=(sum[i+1]-sum[i])/2;
}
}
inline int cmp(double i,double j)
{
if (fabs(i-j)<eps) return 0;
return i<j?-1:1;
}
inline void swap(int i,int j)
{
for (int k=1;k<=n+1;k++) a[i][k]+=a[j][k];
for (int k=1;k<=n+1;k++) a[j][k]=a[i][k]-a[j][k];
for (int k=1;k<=n+1;k++) a[i][k]-=a[j][k];
}
void gauss(void)
{
double r;
for (int i=1;i<=n;i++)
{
for (int j=i+1;j<=n;j++)
if (!cmp(a[i][i],0)||cmp(abs(a[i][i]),abs(a[j][i]))>0) swap(i,j);
for (int j=i+1;j<=n;j++)
if (cmp(a[i][j],0))
{
r=a[j][i]/a[i][i];
for (int k=i;k<=n+1;k++) a[j][k]-=a[i][k]*r;
}
}
for (int i=n;i;i--)
{
for (int j=i+1;j<=n;j++) a[i][n+1]-=a[i][j]*res[j];
res[i]=a[i][n+1]/a[i][i];
}
for (int i=1;i<n;i++) printf("%0.3lf ",res[i]);
printf("%0.3lf\n",res[n]);
}
int main(void)
{
init();
gauss();
return 0;
}