BZOJ 2301 Problem b 莫比乌斯反演

给出T5e4T\leq5e4组数据,每次询问多少个数对(x,y)(x,y)满足axba\leq x\leq bcydc\leq y \leq d并且gcd(x,y)=kgcd(x,y)=k。简单容斥之后可以得到要求的实际上是这个。假设nmn\leq m
i=1nj=1m[gcd(i,j)=k]\quad \sum\limits_{i=1}^n\sum\limits_{j=1}^m [gcd(i,j)=k]
=i=1n/kj=1m/k[gcd(i,j)=1]=\sum\limits_{i=1}^{n/k}\sum\limits_{j=1}^{m/k}[gcd(i,j)=1]
=i=1n/kj=1m/kdgcd(i,j)μ(d)=\sum\limits_{i=1}^{n/k}\sum\limits_{j=1}^{m/k}\sum_{d|gcd(i,j)}\mu(d)
=d=1n/kμ(d)[nkd][mkd]=\sum\limits_{d=1}^{n/k}\mu(d)[\frac{n}{kd}][\frac{m}{kd}]
处理出μ(d)\mu(d)前缀和,对后面的分块即可。
复杂度是O(Tw)O(T\sqrt{w})ww是最大值域。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const ll INF=LONG_LONG_MAX;
const int N=5e4+7;
int pri[N],tot=0;
bool ok[N];
int mu[N],sum[N];
void getmu() {
	mu[1]=1;
	for(int i=2;i<=50000;i++) {
		if(!ok[i]) pri[++tot]=i,mu[i]=-1;
		for(int j=1;j<=tot&&i*pri[j]<=50000;j++) {
			ok[i*pri[j]]=1;
			if(i%pri[j]) mu[i*pri[j]]=-mu[i];
			else { mu[i*pri[j]]=0;break; }
		}
	}
	sum[1]=mu[1];
	for(int i=2;i<=50000;i++) sum[i]=sum[i-1]+mu[i];
} 
int k;
ll solve(int n,int m) {
	n/=k,m/=k;
	if(n>m) swap(n,m);
	ll ans=0;
	for(int l=1,r=0;l<=n;l=r+1) {
		r=min(n/(n/l),m/(m/l));
		ans+=1LL*(sum[r]-sum[l-1])*(n/l)*(m/l); 
	}
	return ans;
}
int main() {
	int T;
	int a,b,c,d;
	getmu(); 
	scanf("%d",&T); 
	while(T--) {
		scanf("%d%d%d%d%d",&a,&b,&c,&d,&k); 
		printf("%lld\n",solve(b,d)-solve(b,c-1)-solve(a-1,d)+solve(a-1,c-1));
	}
	return 0;
}
发布了220 篇原创文章 · 获赞 6 · 访问量 4492
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览