OpenCV之人脸检测

在这里插入图片描述

1.人脸检测模型Caffe

OpenCV自带了基于Caffe的人脸检测:
在这里插入图片描述
GitHub地址:https://github.com/opencv/opencv/tree/4.1.2/samples/dnn/face_detector
在这里插入图片描述
训练使用Caffe模型必须的两个文件:

  • .prototxt ------------ 模型的网络结构
  • .caffemodel ------- 模型权重
1.1 下载预训练权重

这里用了旧版本4.1.0
在这里插入图片描述
双击解压提取到一个文件夹下,找到 download_weights.pyweights.meta4 文件,用来下载权重文件:
在这里插入图片描述
或者weights.meta4 文件包含有链接可直接下载:
https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel
下载后的模型文件大小有5M:
在这里插入图片描述

2. 人脸图像测试

2.1 代码
import numpy as np
import cv2

def detector_face_image(prototxt_path,model_path,image_path):
    # 加载
    print("loading model...")
    net = cv2.dnn.readNetFromCaffe(prototxt_path,model_path)

    #构造blob
    image = cv2.imread(image_path)
    image = cv2.resize(image,(300,300))
    (h,w) = image.shape[:2]
    blob = cv2.dnn.blobFromImage(image, 1.0, (300,300),
                                 (104.0,177.0,123.0))

    # 检测人脸
    print("detecting face... ")
    net.setInput(blob)
    detections = net.forward()

    #遍历
    for i in range(0, detections.shape[2]):
        confidence = detections[0,0,i,2]
        default_confidence = 0.5
        # 过滤弱检测
        if confidence > default_confidence:
            # 获取检测框坐标
            box = detections[0,0,i,3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            # 绘制框
            print("confidence: {:.3f}".format(confidence))
            text = "{:.2f}%".format(confidence * 100)
            y = startY - 10 if (startY - 10) > 10 else (startY +10)
            cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)
            cv2.putText(image,text, (startX, y),cv2.FONT_HERSHEY_SIMPLEX,
                        0.45, (0,0,255),1)

    cv2.imshow("Output_Image",image)
    cv2.waitKey(0)

if __name__=="__main__":
    # prototxt文件路径
    prototxt_path = "G:\\yu_data\\detect_face\\deploy.prototxt"
    # model文件路径
    model_path = "G:\\yu_data\\detect_face\\res10_300x300_ssd_iter_140000_fp16.caffemodel"
    # image路径
    image_path = "G:\\yu_data\\detect_face\\01.png"

    detector_face_image(prototxt_path, model_path, image_path)
2.2 结果
待检测图像检测结果
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
未检测到人脸

如果人脸比较远,效果并不好。

3. 人脸视频测试

3.1 代码
import imutils
from imutils.video import VideoStream
from imutils.video import FileVideoStream
from imutils.video import FPS
import numpy as np
import cv2
import time

def detector_face_video(prototxt_path,model_path,video_path):
    # 加载
    print("loading model...")
    net = cv2.dnn.readNetFromCaffe(prototxt_path,model_path)

    #从摄像头读取
    print("starting video stream...")
    # vs = VideoStream(src=0).start()
    # time.sleep(2.0)

    # 直接读取视频文件
    fvs = FileVideoStream(video_path).start()

    while True:
        # 获取单帧
        # frame = vs.read()
        frame = fvs.read()
        # frame = imutils.resize(frame, width=640)
        if frame is None:
        	break
        # 构造blob
        (h,w) = frame.shape[:2]
        # print(h,w)
        frame = cv2.resize(frame,(640,360))
        blob = cv2.dnn.blobFromImage(frame, 1.0, (640,360),
                                     (104.0,177.0,123.0))

        # 检测人脸
        print("detecting face... ")
        net.setInput(blob)
        detections = net.forward()

        #遍历
        for i in range(0, detections.shape[2]):
            confidence = detections[0,0,i,2]
            default_confidence = 0.7
            # 过滤弱检测
            if confidence < default_confidence:
                continue
            # 获取检测框坐标
            box = detections[0,0,i,3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            # 绘制框
            print("confidence: {:.3f}".format(confidence))
            text = "{:.2f}%".format(confidence * 100)
            y = startY - 10 if (startY - 10) > 10 else (startY +10)
            cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2)
            cv2.putText(frame,text, (startX, y),cv2.FONT_HERSHEY_SIMPLEX,
                        0.45, (0,0,255),1)

        cv2.imshow("Output_Frame",frame)
        key = cv2.waitKey(1) & 0xFF
        # 按q键退出
        if key == ord("q"):
            break

    fvs.release()
    cv2.destroyAllWindows()
    # vs.stop()

if __name__=="__main__":
    # prototxt文件路径
    prototxt_path = "G:\\yu_data\\detect_face\\deploy.prototxt"
    # model文件路径
    model_path = "G:\\yu_data\\detect_face\\res10_300x300_ssd_iter_140000_fp16.caffemodel"
    # video路径
    video_path = "G:\\yu_data\\detect_face\\1.mp4"

    detector_face_video(prototxt_path, model_path, video_path)
3.2 结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

圆滚熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值