利用热噪声提升单电子电路信号传播

日本应用物理杂志

常规论文

用于高效信号传播的热噪声利用单电子电路设计

示意图0

1. 引言

近年来,根据摩尔定律描述的超大规模集成电路(VLSI)元件尺寸的微缩已接近其物理极限。’因此,人们正在寻求微型化的新替代方案。结果,各种技术(如纳米技术)得到了开发和进步。此外,已开发出包括纳米器件在内的多种器件。单电子(SE)电路作为一种此类器件受到关注,因为它可以通过控制量子效应来操控单个电子。由于单电子电路主要由纳米尺度的量子点和隧道结等元件构成,因此具有极低的功耗和高集成度。

还期望利用单电子电路的特殊工作方式实现并行信息处理。然而,它也存在一些弱点,例如,由于其以较小的能量控制少量电子,因此对噪声能量非常敏感。此外,随着电路规模的增加,单电子电路中的信号传播需要较长的时间。

为了解决这些问题,本研究聚焦于神经元及其新功能。图1展示了神经元的示意图结构。该神经元具有新颖的结构可以提高系统中的信号传播速度。该结构被称为有髓鞘轴突。轴突是神经元中信号的输出导线和终端。在有髓鞘轴突中,神经被髓鞘覆盖,髓鞘起到绝缘层的作用。髓鞘上存在一些间隙,称为郎飞结。当信号通过这些间隙传播时,已知信号传播速度会得到提升。这种在有髓鞘轴突中的现象被称为跳跃式传导。关键在于,已有报道指出,在跳跃式传导中,系统能够高效地利用噪声能量。因此,如果我们能成功地将神经元的功能应用于单电子电路,则可以通过像神经元一样有效利用热噪声来提高单电子电路的信号传播速度。在本研究中,我们设计了一种模仿神经元结构的单电子电路,旨在通过主动利用热噪声来提高单电子电路中的信号传播速度。

2. 目标电路

在本节中,我们描述了单电子振荡器(SEO)的结构,该振荡器是本研究中的基本单电子电路,以及神经元与单电子振荡器(SEO)之间的对应关系。

2.1 单电子振荡器

SEO是本研究中的基本单电子电路。图2(a)显示了SEO的结构示意图。它由一个偏置电压(Vd)、一个电阻、一个量子点和一个隧穿结串联组成。SEO的样本节点电压(Vn)行为如图2(b)所示。隧穿结(Cj)通过电阻被Vd充电,最终Vn趋近于Vd。隧穿结对电子隧穿具有一个阈值,即当Vn超过该阈值时,发生电子隧穿,Vn迅速变化。随后,Cj再次被Vd充电。当Vd小于阈值时,只有通过输入电压(Vin)施加外部触发才会发生电子隧穿。

单电子振荡器(SEO)可以通过使用电容器作为耦合元件构成一维链式电路,如图3(a)所示。图3(b)展示了一维SEO链中电压变化的传播过程。每个SEO的Vd被设置为小于阈值,并交替为正和负。当第一个SEO因来自Vin的外部触发而发生由电子隧穿引起的快速电压变化时,该电压变化会作为外部触发影响下一个SEO,从而在下一个SEO中引发快速电压变化。在一个SEO发生快速电压变化后,其Vn在一段时间内无法超过阈值。这导致信号只能单向传播。在本研究中,我们将这种电压变化的传播视为信号的传播。

SEO还可以如图4(a)所示在二维中排列。这种二维SEO被称为反应–扩散系统。在二维SEO中,电压的变化会像波一样传播,如图4(b)所示。这种“电压波”有望用于“波计算”设备,且已提出了许多基于反应–扩散系统的应用。然而,单电子电路在存在噪声能量的环境中无法正常工作。因此,有必要解决为实现应用而解决此问题。有关解决噪声能量问题的尝试也已有报道。

示意图1

示意图2 一维SEO链的结构,(b) 一维SEO链中电压变化的传播。)

示意图3 二维SEO的结构,(b) 二维SEO的典型操作。)

2.2 神经元与单电子振荡器的对应关系

图5(a)展示了神经元动作电位的典型变化。神经元具有改变其动作电位的阈值。动作电位在其三种状态(静息态、兴奋态、不应期)下的行为不同。在静息态时,除非超过阈值,否则动作电位保持稳定。在兴奋态时,当动作电位超过阈值,即从相邻细胞膜给予外部刺激时,动作电位会迅速变化。

在不应期,由于动作电位远小于阈值,不会发生电位的快速变化。此外,即使给予外部刺激,也不会超过阈值。因此,信号在神经元中单向传播。神经元细胞膜的结构如图1所示。动作电位的变化是由神经元内离子的运动引起的。离子在细胞膜周围带电。存在称为离子通道的离子通路。离子通过离子通道在细胞内和细胞外区域之间移动。细胞膜上还配备了主动将动作电位恢复到稳定状态的离子泵。在动作电位变化过程中,通过离子泵的作用,不应期转变为静息态。

单电子电路与神经元之间存在一些相似之处。首先,单电子振荡器(SEO)的工作方式类似于神经元的动作电位。如图5(b)所示,SEO的行为可以用神经元动作电位的三种状态转换来表示。在SEO中,Vn被充电直至达到Vd,然后保持稳定。Vn对应于神经元动作电位的静息态。由电子隧穿引起的Vn的快速变化可被视为代表神经元的兴奋态。在Vn发生快速变化后,Vn变得远小于阈值,这可以被视为神经元的不应期。此外,一维SEO和神经元在信号传播(即方向性)方面具有一致的特性。

其次,轴突的细胞膜结构可以用基于单电子振荡器的等效电路来表示。该等效电路如图6所示。单电子振荡器代表郎飞结,其主动改变电位。隧穿结代表离子通道和细胞膜。Vd和膜电阻(Rm)代表离子泵,负责将电位恢复到稳定状态。细胞内电阻(Ri)代表细胞内离子流体,可视为信号传播的一部分。

这种轴突细胞膜结构的等效电路在将Ri变为电容器(C)时,与一维单电子振荡器的等效电路等效。因此,我们认为神经元的结构可以通过单电子电路来模拟。

示意图4 神经元中动作电位的变化,(b) SEO电压的变化。)

示意图5

3. 神经形态单电子振荡器的设计

我们设计了神经形态单电子电路,并通过蒙特卡洛模拟对其运行进行评估。在本节中,我们描述了神经形态单电子振荡器(SEO),这是一种模拟神经元结构的单电子电路。

3.1 一维神经形态SEO

在一维神经形态SEO中,隧穿结被用作耦合元件,如图7所示。已证实,利用热噪声可以提高一维神经形态SEO中的信号传播速度。图8显示了一维神经形态SEO中信号传播速度的仿真结果。如果在每纳秒内传播的信号数量随着SEOs数量的增加而增加,则可以认为信号传播速度提高了。如图8所示,无论隧道结的数量如何,随着温度升高,传播的信号数量均有所增加。因此,信号传播速度随温度升高而增加。我们认为,采用隧穿结作为耦合元件的结构通过利用热噪声,该结构在提高信号传播速度方面是有效的。

当耦合元件处发生电子隧穿时,两个单电子振荡器中的电压会同时快速变化。相反,当单电子振荡器内部发生电子隧穿时,仅在一个单电子振荡器中电压快速变化。我们确认,随着热噪声的增加,耦合元件处的电子隧穿次数与单电子振荡器内的电子隧穿次数之间的差异也随之增大。这表明,增加耦合元件处的电子隧穿次数可实现高速信号传播。因此,明确了采用隧道结作为耦合元件的结构在利用热噪声提高信号传播速度方面的有效性。然而,强热噪声会导致部分信号损失,为解决这一问题,我们对单电子电路进行了重新设计。

示意图6

示意图7

3.2 二维神经形态单电子振荡器

为了解决一维神经形态SEO中的上述问题,我们设计了二维神经形态SEO。二维神经形态SEO的结构如图9所示。据报道,单电子电路在热噪声环境中通过使用簇结构能够正常运行。还已知该簇结构表现出随机共振现象,这是一种最初在神经系统的发现。当系统表现出该现象时,其工作性能可以得到提升。

在本结构的每个簇中,单电子振荡器并行排列,每个簇中单电子振荡器的Vn之和作为Vout输出。因此,二维神经形态SEO通过簇结构构成,从而使电路具备对热噪声的容忍性。此外,我们旨在通过使用隧道结作为耦合元件来提高二维神经形态SEO中的信号传播速度。

示意图8
示意图9 相关值,(b) 信号传播时间。)

4. 仿真结果

我们通过蒙特卡洛模拟对二维神经形态SEO进行了模拟。根据模拟结果,计算了相关系数和信号传播时间。计算结果如图10所示。模拟中使用的参数为C = 6 aF, Cj = 10 aF, R = 600 MΩ, C0j = 1 aF, Co = 10 aF, Ro = 1 GΩ, CA = 10 aF, Vd = 3.5 mV, 簇数量 = 11,以及每个簇中的SEOs数量(N)= 100。

计算得到的相关系数[图10(a)]表示簇1与每个其他簇之间关系的强度。相关值越接近1,其相关性越强,准确地信号传播。通常,如果相关值大于0.7,则表示关系较强。在图10(a)中,相关值在0到3 K范围内较大,但在4到8 K范围内较小。因此,在二维神经形态SEO中,信号在高达3 K的温度下仍能准确传播。

在图10(b)中,时间滞后是信号从簇1传播到簇11所需的时间。时间滞后越小,信号传播越快。图10(b)的结果表明,随着温度升高,时间滞后变大。因此,当温度从2 K升高时,信号传播速度变慢。

5. 讨论

计算得到的相关系数在4到8 K范围内较小。因此,我们获得了簇1、5和9(图11)在各温度下的Vout以及信号传播的光栅图(图12)。我们检验了信号是否足以传播到每个簇电压从图12的变化来看。在0、1、2和3 K的温度下,几乎所有信号都能传播到簇11。然而,我们发现由于热噪声的增加,在4 K时信号无法传播。我们确认在4 K时存在非期望方向的电子隧穿,这导致了相关值的降低。

在二维神经形态SEO中,该电路对热噪声具有容忍度。相比之下,已有报道指出膜电位的波动以及热噪声都会影响神经元中的信号传播。接下来,我们研究了每个簇中SEO的数量(N)如何影响信号传播,以探讨膜电位波动与电路操作之间的关系。如果N值增加,如上所述,热噪声的影响会减小。此外,Vout的波动也与N的取值相关。图13显示了在不同N值下簇1、5和9的Vout,以及信号的光栅图。

在每个N值下的信号传播情况如图14所示。我们在3 K温度下验证了结果,高于该温度时信号更难以传播。当N值较小时,信号有时只能短距离传播[见图14(a)],此时Vout的波动过大,干扰了信号传播。另一方面,当N值较大时,信号仅能传播到簇2[见图14(c)],此时Vout的波动不足以使信号传播到相邻的簇。从图14(b)中可以确认,几乎所有的信号都能从簇1传播到簇11。因此,存在一个最优N值,使得信号传播效果最佳,即Vout的最优波动能够促进信号传播。

根据我们对信号传播时间的评估,随着温度升高,信号传播速度变低。在图15中,我们展示了电子隧穿次数随温度的变化。方向1和2是二维神经形态SEO中的单电子振荡器内的电子隧穿,方向3和4是二维神经形态SEO中耦合元件内的电子隧穿,如图9所定义。电子隧穿次数从2 K开始增加。这一变化与图10(b)中时间滞后的变化相似。因此,我们认为这种减少信号传播速度的降低是由于电子隧穿次数的增加所致。

我们已经发现,在一维神经形态SEO中,信号传播速度的提高源于电子隧穿次数的增加。然而,我们认为在二维神经形态SEO中,电子隧穿次数的增加会导致信号传播速度下降。Vout是每个簇中SEOs的Vn之和。因此,随着电子隧穿次数的增加,所有电子隧穿导致电压变化所需的时间更长。因此,我们认为在二维神经形态SEO中,随着温度升高,信号传播速度变低。

在本研究中,我们证明了二维神经形态SEO对热噪声具有容忍性。下一步,我们的目标是通过在二维神经形态SEO中高效利用热噪声来提高信号传播速度。在本研究中,我们发现基于神经结构对耦合元件和簇结构进行修改对于改善电路性能非常有效。从结果来看,我们认为神经结构对于提高信号传播效率非常重要。因此,我们正在修改电路的配置以使其实现高速信号传播的同时保持热噪声容忍性。

示意图10 T = 0K,(b) T = 1 K,(c) T = 2K,(d) T = 3 K,(e) T = 4K,以及 (f) T = 5 K。)

示意图11 T = 0 K,(b) T = 1K,(c) T = 2K,(d) T = 3K,(e) T = 4K,和 (f) T = 5K。)

示意图12 N = 20, (b) N = 100,和 (c) N = 700。)

示意图13 N= 20,(b) N= 100, 和 (c) N= 700。)

示意图14

6. 结论

我们提出了一种新的单电子电路,通过关注神经元结构并利用热噪声来提高信号传播速度。已证实,在一维神经形态SEO中利用热噪声可提升信号传播速度。此外,我们设计了具有热噪声容忍度的二维神经形态SEO。仿真结果表明,由簇结构组成的二维神经形态SEO在0到3 K的温度范围内具有对热噪声的容忍度。然而,随着温度升高信号传播速度降低的问题尚未解决。下一步,我们的目标是在改进的二维神经形态SEO中高效利用热噪声,以进一步提高信号传播速度。

基于阶梯碳交易的含 P2G-CCS 耦合和燃气掺氢的虚拟电厂优化调度(Matlab代码实现)内容概要:本文围绕“基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度”展开研究,提出了一种综合考虑碳交易机制、电转气与碳捕集封存(P2G-CCS)技术以及天然气管道掺氢利用的虚拟电厂优化调度模型。通过构建阶梯式碳交易成本函数,激励低碳运行,结合P2G技术将富余可再生能源转化为氢气或甲烷进行存储与利用,同时引入CCS技术降低碳排放,并探索燃气系统掺氢输送的可行性,提升能源系统灵活性与低碳水平。采用Matlab进行建模与求解,验证了该模型在降低系统运行成本、减少碳排放和提高可再生能源消纳能力方面的有效性。; 适合人群:具备电力系统、能源系统优化背景,熟悉Matlab编程和优化建模的研究生、科研人员及能源领域工程技术人员。; 使用场景及目标:①研究高比例可再生能源接入背景下虚拟电厂的低碳优化调度策略;②探索P2G-CCS与燃气掺氢技术在综合能源系统中的协同效益;③实现阶梯碳交易机制下的经济性与环保性联合优化。; 阅读建议:建议读者结合Matlab代码深入理解模型构建过程,重点关注目标函数设计、约束条件设置及求解方法的选择,同时可尝试调整碳交易阶梯参数、P2G效率或掺氢比例等关键变量,开展敏感性分析以深化对系统运行特性的认知。
内容概要:本文档是Geant4协作组织发布的面向应用开发者的权威手册,系统介绍了Geant4——一种用于模拟粒子与物质相互作用的蒙特卡洛仿真工具包的核心概念与使用方法。内容涵盖从基础入门(如定义主程序、构建探测器几何结构、设置材料与粒子)到高级功能(如物理过程建模、轨迹跟踪、可视化、数据分析及多线程控制)的完整开发流程。重点讲解了用户动作类、探测器响应、电磁场处理、击中与数字化、偏差技术、并行几何与评分机制等关键模块,并提供了丰富的代码示例与命令接口说明,帮助开发者构建完整的仿真应用程序。; 适合人群:具备C++编程基础和基本粒子物理知识,从事高能物理、核科学、医学物理或辐射探测等领域研究的研发人员、研究生及工程技术人员;尤其适合需要定制化仿真系统的应用开发者。; 使用场景及目标:① 构建粒子探测器的几何模型并配置材料属性;② 定义粒子源与物理过程,实现事件生成与轨迹追踪;③ 利用可视化工具调试几何结构与分析数据;④ 实现敏感探测器、击中处理与数字化流程;⑤ 应用评分与分析工具进行结果统计与输出。; 阅读建议:建议结合Geant4安装包中的示例程序(如B1、RE系列)同步实践,优先掌握核心类(G4RunManager、用户动作类、G4UImanager)的作用机制,重视可视化调试与几何检查功能的使用,逐步深入理解状态机管理、多线程架构与自定义物理列表的设计逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值