多种方法求斐波那契数组,

本文探讨了三种计算斐波那契数列的方法:迭代(效率低下)、线性累加(较高效)以及利用矩阵快速幂(最高效)。通过代码对比,展示了在计算第40个和第1001个斐波那契数时的时间差异,强调了递归优化的重要性。
摘要由CSDN通过智能技术生成

1.第一种方法是迭代,发现非常慢非常慢,大量重复计算,可见递归并不是什么高效的算法,我发现当求第50个的时候已经需要很长时间了,下面的代码测试的是计算第40个时间。

 

#include<iostream>
#include"MyTimer.h"
using namespace std;

 long long    conquer_fibonacci(long long A[],int n){ //递归法 很慢 很慢 ,大量的重复计算 可见递归并不是什么高效的算法 Ω(φ^n)
    if(n==1){return A[n];}
    else if(n!=2){
        A[n]=conquer_fibonacci(A,n-1)+conquer_fibonacci(A,n-2);
        return A[n];
    }
    else{
        A[n]=A[0]+A[1];
        return A[n];
    }
}




int main(){
 long long    fibonacci[40];

fibonacci[0]=0;
fibonacci[1]=1;
int length=sizeof(fibonacci)/sizeof(long long );
int a[]={1,1,1,0};

MyTimer mt,mt2;
mt.Start();
  conquer_fibonacci(fibonacci,length-1); //递归求40个 , 保存在数组里

mt.End();
cout<<mt.costTime<<"us"<<endl;

for(int i=0;i!=length;++i){
    cout<<fibonacci[i]<<" ";
if((i+1)%4==0)cout<<endl;
}
cout<<endl;



return 0;
运行结果:


2.第二种就是 用普通的累加,运用前面计算的结果,是线性的,为了和第三中方法比较 我这里计算了第1001个的数据

#include<iostream>
#include"MyTimer.h"
using namespace std;

int main(){

unsigned long long fibonacci2[1001];

fibonacci2[0]=0; fibonacci2[1]=1;
int length=sizeof(fibonacci2)/sizeof(long long );


MyTimer mt;
mt.Start();
for(int i=2;i!=length;++i){ //普通,从下而上 θ(n)
    fibonacci2[i]=fibonacci2[i-1]+fibonacci2[i-2];
}
mt.End();
cout<<mt.costTime<<"us"<<endl;

cout<<fibonacci2[1000];

cout<<endl;





return 0;
}

运行结果:


用时为3 us

3.第三章种就是用到斐波那契数组的一个特性


如上公式 要求Fn 只要求出矩阵

1 1

1 0

的n次方就可以得到Fn  。

然后用power number里的递归就可以在lgn 的时间内得到Fn

代码如下:

#include<iostream>
#include"MyTimer.h"
using namespace std;
void recursive_square(unsigned long long a[],int n){
    if(n==1){return;}   // 一次方 直接返回
if((n%2)!=0){ //n为奇数
    recursive_square(a,(n-1)/2);  //先求得(n-1)/2 的a矩阵的形态
  unsigned long long   a0=a[0],a1=a[1],a2=a[2],a3=a[3];// 计算a的平方 ,
a[0]=a0*a0+a1*a2;
a[1]=a0*a1+a1*a3;
a[2]=a2*a0+a3*a2;
a[3]=a2*a1+a3*a3;
 a0=a[0];a1=a[1];a2=a[2];a3=a[3]; //再补乘一个 初始矩阵,,可以对照power number 只是这里用a来传导每次的结果
a[0]=a0*1+a1*1;
a[1]=a0*1+a1*0;
a[2]=a2*1+a3*1;
a[3]=a2*1+a3*0;

}
else{ //n为偶数 很简单 先得到n/2 的a的状态,再a平方就可以了
int    mid =n/2;
    recursive_square(a,mid);
unsigned long long a0=a[0],a1=a[1],a2=a[2],a3=a[3];
a[0]=a0*a0+a1*a2;
a[1]=a0*a1+a1*a3;
a[2]=a2*a0+a3*a2;
a[3]=a2*a1+a3*a3;

}

}

int main(){

 unsigned long long  a[]={1,1,1,0}; //初始矩阵
MyTimer mt;

mt.Start();
recursive_square(a,1000); //进入计算 初始矩阵的1000次方
mt.End();
cout<<endl;
cout<<mt.costTime<<"us"<<endl;
cout<<a[1]; //输出Fn


return 0;
}


运行结果:


可见计算结果是一样的 但是用时已经有细微差异了,如果计算更多 可以得到明显的差异。。


水平还是有限,这个递归完全自己写的,用了好久,相信会越来越好的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值