单因子利率模型:理论与应用
1. 零息债券定价与风险中性漂移
在利率模型中,零息债券定价是一个核心问题。通过一系列的推导和代换,我们得到了零息债券价格必须满足的偏微分方程(PDE):
[
\frac{\partial P}{\partial t}+\frac{1}{2}\sigma^2\frac{\partial^2 P}{\partial r^2}+\mu(r,t)\frac{\partial P}{\partial r}-rP = 0
]
其边界条件为 (P(r, T, T) = 1)。该债券定价方程的解由费曼 - 卡茨公式给出:
[
P(t, T)=E_Q^t\left[\exp\left(-\int_t^T r(u)du\right)\right]
]
其中,期望 (E_Q^t) 是在风险中性测度 (Q) 下计算的,短期利率 (r) 遵循风险中性过程:
[
dr = \mu(r, u)du + \sigma(r, u)dz, \quad u \in [t, T]
]
且满足初始条件 (r(t) = r)。
短期利率过程在现实世界和风险中性世界中的漂移存在如下关系:
[
\mu(r, t) = m(r, t) - \sigma(r, t)\lambda(r, t)
]
其中,(\lambda(r, t)) 是利率风险的市场价格。值得注意的是,在债券定价时,我们不需要分别知道 (m(r, t)) 和 (\lambda(r, t)),只需要知道风险中性漂移 (\mu(r, t)) 即可。
计算风险中性漂移 (\mu(r,
订阅专栏 解锁全文
37

被折叠的 条评论
为什么被折叠?



