立体图像质量评估:从基础到前沿
1. 图像质量评估的重要性与背景
在当今数字化时代,图像和视频的采集、传输和显示技术飞速发展。无论是日常生活,还是学术、工程等特定应用场景,人们对高质量图像和视频的需求都在急剧增长。比如,3D 电影和 3D 电视的大规模应用,以及未来手机有望成为最大的 3D 显示应用平台,都体现了这一趋势。
然而,在立体图像的捕获、编码、传输、处理和显示过程中,不可避免地会引入外部的失真和干扰,导致图像质量下降,给人带来极大的视觉不适。因此,设计有效的方法来评估图像的感知质量至关重要,这对于图像处理系统的性能优化具有关键意义。
2. 图像质量评估的分类
图像质量评估(IQA)方法可分为主观评估和客观评估。主观评估虽然能准确获得失真图像的质量分数,但耗时费力,且在非受控环境下难以实时实现。因此,开发实时可靠的客观 IQA 方法迫在眉睫,其预测的质量分数应与人类眼睛的主观感知分数一致。
客观 IQA 方法又可根据是否涉及参考图像信息分为以下三类:
|分类|定义|特点|
| ---- | ---- | ---- |
|全参考(FR)IQA|提供原始参考图像进行比较,以更好地探索图像的感知质量|能充分利用参考图像信息,但在实际应用中可能存在参考图像不可用的情况|
|无参考(NR)IQA|在没有任何相应参考图像信息的情况下预测失真图像的质量分数|最具价值和挑战性,适用于参考图像不可用的场景|
|减少参考(RR)IQA|部分借助参考图像进行评估|是 FR 和 NR IQA 之间的折衷方案|
此外,根据输入的不同,IQA 还可分为 2D IQA(针对平面图像)和 3
超级会员免费看
订阅专栏 解锁全文
875

被折叠的 条评论
为什么被折叠?



