42个AI与机器人大问题之——
「通用人工智能会实现吗?」
本届大会由腾讯 AI Lab 携手Nature Research(自然科研)及旗下《自然-机器智能》、《自然-生物医学工程》两本期刊联合举办。大会上将发布「42个 AI 与机器人大问题」报告,并邀请 11 位世界知名学者为这些宏大问题给出每个人独特而深刻的理解与答案。在报告中,我们还邀请到 Yoshua Bengio、Jürgen Schmidhuber和多位中国院士提供专家见解,也欢迎你参与报告调研。


「42 」源自科幻小说《银河系漫游指南》,是智能计算机「Deep Thought(深思)」经过 750 万年运算,找到的「关于生命,宇宙及一切问题的终极答案」。我们希望这个有终极目标意涵的 42 个大问题,能激发对人、AI与机器人未来的长远思考与规划。

下面我们将开启一段旅程,看看发起机器人世界杯的北野宏明教授,如何思考机器人对人类社会的潜在影响,以及AI技术在这一未来进程中的价值。

北野宏明(Hiroaki Kitano)是一位杰出的跨学科研究专家,不仅在人工智能和机器人领域成果丰硕,在系统生物学领域也做出了重要的开创性贡献。
1984 年,北野取得了日本国际基督教大学物理学学士学位,在日本电气(NEC)工作几年之后,进入卡内基·梅隆大学机器翻译中心从事研究。1991 年,北野凭借在大规模并行机器上的口语语言翻译系统的研究成果,获得了东京大学博士学位,并进一步获得了 1993 年的 IJCAI 计算机与思想奖(Computers and Thought Award)。
北野的研究领域没有止步于此。1993 年,北野加入索尼计算机科学实验室(CSL),开始了在系统生物学方面的研究,为该领域的发展做出了重大贡献。与此同时,他也开始推进机器人世界杯(RoboCup)项目。之后,北野参与了索尼机器狗 AIBO 和人形机器人 QRIO 的开发。现在,他已成为索尼计算机科学实验室(CSL) 的总裁兼CEO,并且领导着日本东京系统生物学研究所,担任理化学研究所(RIKEN)综合医学科学中心小组主任,以及冲绳科学技术大学院大学教授。
发起机器人世界杯
如果你对机器人竞技感兴趣,你就不可能没听说过「机器人世界杯(RoboCup)」——这是一个旨在推进智能机器人研究前沿的国际科学倡议,其初始目标是在2050 年之前创造出一支能胜过人类足球世界杯冠军球队的机器人球队。
1993 年,北野宏明与大沢英一等多位日本机器人研究者联合发起了「机器人世界杯倡议」,以促进对人工智能和智能机器人的研究。RoboCup 涉及到高动态环境中多个机器人的互相合作,需要很多不同领域的人工智能技术突破,比如实时传感器融合、策略规划、多智能协作、机器学习等。
1997 年,第一届 RoboCup 在日本名古屋成功举办,有超过 40 支队伍参加了实体和虚拟机器人比赛。作为 RoboCup 联合会(RoboCup Federation)的首任主席,北野为此做出了不可替代的奠基性的重要贡献。
现在,RoboCup已经发展成全球人工智能和机器人研发领域的一项重要的年度盛会,涵盖人形与轮式等不同形式的机器人,以及实体与虚拟的不同规模的比赛场景。多年来,RoboCup 已在全球多个国家留下了自己的印记,包括中国的苏州(RoboCup 2008)和合肥(RoboCup 2015)。今年的 RoboCup 已于 7 月在澳大利亚悉尼成功举办,德国波恩大学的 NimbRo 队击败了德国奥芬堡应用科学大学的 Sweaty 队,获得了今年的人形机器人成年人尺寸组足球赛(AdultSize Soccer Competition)世界杯冠军,中国清华大学的清华火神(Tsinghua Hephaestus)队获得第三名。

RoboCup 2019 成年人尺寸组足球赛决赛场景
研发索尼机器宠物狗

你认得上图中两个玩球的机器人(狗)吗?玩红球的是最新款的机器宠物狗 AIBO。AIBO 是世界上首款大规模向市场投放的娱乐向消费机器人,自 1999 年首次发售以来,已经在很多人的生命里留下重要的印记。玩篮球的人形机器人则叫做 QRIO,寓意 Quest for Curiosity(追寻好奇心),虽然最终未能上市发售,但它是世界上第一个能够奔跑的人形机器人,而且还具有一定的语音和人脸识别能力。
北野也尤其关注大规模并行处理。1989 年,他提出了一种可以大规模并行运作的语音到语音对话翻译系统 ΦDmDialog。此后,他还提出了用于知识处理的并行式协处理器 IXM2,并与著名人工智能研究者、语义网的发起人之一 James Hendler 合作编辑了《大规模并行式人工智能》一书。
推动系统生物学发展
北野的研究领域广泛,除了机器人和人工智能,还在其他一些领域也做出了重要的先驱性贡献,其中最值得提及的是系统生物学。
系统生物学(Systems Biology)研究的是行为不能约简为各部分的功能的线性和的生物系统。系统生物学不一定涉及大量组件或大型数据集(就像基因组学或连接组学),但往往需要借鉴物理学的量化建模方法。
北野宏明的工作极大地推动了现代系统生物学领域的发展,其编写的《系统生物学基础》是该领域的重要教科书, 2002 年发表的论文《计算系统生物学》也影响深远。此外,他还参与开发了系统生物学标记语言 SBML 以及用于系统生物学模拟的集成环境 ERATO 系统生物学工作台。
对于这样一位研究领域广泛又非常成功的探索者,你一定会好奇他会在AI与机器人大会上分享怎样的见解。点击【阅读原文】报名参与大会,与我们一同见证!
|演讲摘要
《诺贝尔-图灵挑战赛:创造科学发现的引擎》
Nobel Turing Challenge: Creating the Engine for Scientific Discovery
AI 领域最激动人心和最具颠覆性的研究方向之一是开发能够高度自动地做出重大科学发现的 AI 系统。我将在本演讲中提出旨在连接 AI 与其它科学社区的「诺贝尔-图灵挑战赛」。本挑战赛旨在推动开发用于科学发现的 AI 系统——它们能做出诺奖级的重大科学发现,并且诺贝尔奖委员会与其他科研社区可能也无法分辨该发现是来自人类科学家还是来自 AI(Kitano, H., AI Magazine, 37(1) 2016)。这个挑战赛在生物医学领域尤其重要。在这一领域,系统生物学的进展(Kitano, H., Science, 295, 1662-1664, 2002; Kitano, H., Nature, 420, 206-210, 2002)已经导致数据和知识的总量远远超出了人类的理解能力。我在系统生物学领域已经研究了 20 多年,我认为系统生物学领域的下一个重大突破将需要 AI 驱动的科学发现。一开始可能是用 AI 辅助科研,但最终会出现具备高度自主能力的 AI 科学家。这一挑战赛涵盖有关科学发现本质、人类认知极限、实现重大发现的各个路径的作用、机缘巧合和科学直觉的计算意义的一系列基本问题,以及实现下一阶段 AI 研究的许多其它问题。

☟ 点击【阅读原文】参加AI与机器人大会